17.4.5. Сократительная реакция
Одиночное раздражение.
При воздействии одиночного стимула мышца начинает сокращаться спустя очень короткое время (около 0,05 с), называемое латентным периодом. Затем мышца быстро укорачивается, в ней развивается напряжение. Эта фаза сокращения длится около 0,1 с. Вслед за ней наступает более долгий период расслабления, когда напряжение уменьшается и мышца возвращается в исходное состояние; это занимает 0,2 с. Такое сокращение мышцы называется одиночным сокращением (рис. 17.20).Рис. 17.20. Одиночное сокращение икроножной мышцы лягушки
Двукратное раздражение.
Если интервал между первой и второй стимуляцией значителен, миограмма регистрирует два одинаковых ответа мышцы. Однако если отрезок времени между двумя стимулами укорачивается настолько, что второй из них подается в тот момент, когда мышца еще сокращается после первого, то второе сокращение накладывается на первое. В результате получается "бугристая" миограмма (рис. 17.21). При втором сокращении развивается большее в сравнении с первым напряжение. Этот эффект называется механической суммацией.Рис. 17.21. Записи сокращений икроножной мышцы лягушки на кимографе. А. Одиночное сокращение при однократном раздражении. Б-Г. Механическая суммация, происходящая при повышении частоты раздражения
Ритмическое раздражение.
С увеличением частоты стимуляции неровности на миограмме постепенно сглаживаются (рис. 17.22) и отдельные сокращения сливаются (суммируются). В этом случае вычерчивается плавная линия, которая, поднимаясь, достигает определенного уровня (плато) и относительно долго остается на этом уровне. О такой мышце говорят, что она находится в состоянии тетануса. Напряжение в мышце при тетанусе в стадии плато — максимально возможное для данной мышцы. Тетаническое сокращение не может длиться неопределенно долго, так как мышца подвержена утомлению.Рис. 17.22. Миограмма, отражающая развитие тетануса в икроножной мышце лягушки. А. 'Зубчатый' тетанус при 8 электрических стимулах за 0,5 с. Б. 'Гладкий' тетанус при 18 стимулах за 0,5 с
17.4.6. Теория скользящих нитей
В 1954 г. две группы исследователей-X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке, сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина[2]
диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Как показали наблюдения, во время сокращения актиновые нити сдвигаются по направлению к середине саркомера (рис. 17.23). Возникла гипотеза, что головки миозиновых нитей служат как бы "крючками" и, прикрепляясь к F-актину, образуют поперечные мостики, а затем их конфигурация изменяется таким образом, что молекулы актина втягиваются внутрь диска А. По окончании этого процесса миозиновые головки отделяются от актина и "прицепляются" к другим, более отдаленным участкам актиновой нити. Саркомер способен укорачиваться на 30% своей длины. Цикл присоединения и отделения поперечных мостиков может повторяться многократно с различной частотой в зависимости от скорости укорочения. Необходимую для этого энергию доставляет расщепление АТФ; для осуществления полного цикла одного мостика требуется одна молекула АТФ.Рис. 17.23. Схема сокращения саркомера. Актиновые нити скользят вдоль нитей миозина
Сейчас эта гипотеза принята почти всеми. Однако действительный процесс, приводящий при этом к созданию механической силы (электромеханическое сопряжение
), еще мало изучен, и для физиологов, занимающихся мышцами, он остается главной проблемой, ждущей своего решения. Однако в этой области достигнуты значительные успехи, и в следующем разделе мы изложим современные представления о механизме сокращения саркомера.17.4.7. Электромеханическое сопряжение
В состоянии покоя саркомер содержит определенные количества ионов Mg2+
и АТФ, в то время как концентрация свободных ионов Са2+ очень мала. В этих условиях актиновые нити находятся в "не-рабочем состоянии", так как тропомиозин, располагаясь определенным образом на молекуле актина, блокирует участки, к которым должны прикрепляться головки миозина, и эти головки притянуты к продольной оси миозиновой нити и удалены от актина.