Читаем Биология. В 3-х томах. Т. 3 полностью

При стимуляции мышечного волокна нервным импульсом по сарколемме распространяется волна деполяризации, которая затем то Т-системе переходит внутрь саркомера. Импульс достигает цистерн триады и стимулирует высвобождение из них ионов Са2+ , концентрация которых в саркоплазме соответственно увеличивается.

Ионы Са2+ связываются с тропонином С, который в свою очередь взаимодействует с тропонином I и снимает обычный эффект системы тропонина, препятствующий образованию мостиков между актином и миозином. Актин "включается" при смещении расположенного на его поверхности тропомиозина — места связывания актина с миозином обнажаются. В мышцах некоторых беспозвоночных животных ионы Са2+ могут также стимулировать АТФазную активность миозина, которая усиливается в дальнейшем и под действием актина. Во всех мышцах при активации актина и миозина миозиновая головка выводится из положения покоя и, связываясь с актином, образует актомиозиновый поперечный мостик. Энергия для образования таких мостиков высвобождается при гидролизе АТФ, и за счет этой энергии изменяется угол отхождения поперечных мостиков, что ведет к подтягиванию актиновой нити по направлению к середине саркомера. В результате такой активности всех миофиламентов при раздражении саркомера в нем создается сила (рис. 17.24), которая стремится вызвать укорочение саркомера.

Рис. 17.24. Электромеханическое сопряжение (тропомиозин и тропонин не изображены)


При затухании возбуждения в саркомере ионы Са2+ активно откачиваются назад в цистерны триад с помощью АТФ-зависимого кальциевого насоса. Концентрация этих ионов вскоре становится ниже пороговой для сокращения, и саркомер расслабляется. Комплекс тропомиозин-тропонин ингибирует АТФазную активность; поперечные мостики разрываются; актин, а возможно, и миозин переходят в "выключенное" состояние, и напряжение саркомера возвращается к обычному уровню покоя.

17.4.8. Снабжение энергией

Обычно первоисточником энергии для мышечного сокращения служит гликоген, а иногда используются жирные кислоты. В процессе расщепления этих субстратов вырабатывается АТФ, гидролиз которого доставляет энергию непосредственно для самого сокращения:

АТФ→АДФ + Фн + Энергия

В покоящейся мышце количество АТФ невелико, оно может обеспечить энергией лишь около восьми одиночных сокращений. Такой уровень АТФ может поддерживаться при обычном аэробном метаболизме (дыхании). В процессе работы мышц АТФ быстро расходуется, и его уровень должен быстро восстанавливаться уже за счет других процессов.

В восстановлении уровня АТФ участвует содержащийся в мышцах креатинфосфат (КрФ). Образующийся при мышечном сокращении АДФ вновь фосфорилируется в АТФ за счет креатинфосфата:

Этот процесс непрерывно пополняет запасы АТФ, которые могут использоваться непосредственно при сокращении. Но в конце концов возникает необходимость и в пополнении резервов креатинфосфата, и оно происходит за счет окисления жирных кислот или гликогена. Образующийся при этом АТФ используется для ресинтеза креатинфосфата из креатина (Кр):

Кр + АТФ → КрФ + АДФ.

При очень интенсивной работе мышц поступающего кислорода вскоре оказывается недостаточно для поддержания на должном уровне окислительного форфорилирования (разд. 11.3.6). В этих условиях пировиноградная кислота — конечный продукт гликолиза — при участии ионов Н+ превращается в молочную кислоту.

Так происходит из-за нехватки кислорода, связывающего ионы Н+ . В этом случае говорят, что работа мышцы создает кислородную задолженность.

Образование молочной кислоты — процесс с относительно малым энергетическим выходом: высвобождаемая энергия составляет лишь 7% от энергии, получаемой при полном окислении глюкозы. Молочная кислота токсична и рано или поздно должна быть выведена из организма или переработана. Так и происходит при уменьшении или прекращении мышечной работы. В этот период кислорода становится достаточно для окисления молочной кислоты и частичного превращения ее в гликоген. Такой процесс обычно происходит в печени; здесь 1/5 часть молочной кислоты полностью окисляется до углекислоты и воды; высвобождаемая при этом энергия расходуется на превращение остальной молочной кислоты в глюкозу. Часть глюкозы возвращается в мышцы, и там из нее в конце концов образуется гликоген, а глюкоза, оставшаяся в печени, превращается в гликоген и запасается в ней. Время полной переработки молочной кислоты — это именно то время, которое необходимо для ликвидации кислородной задолженности после энергичной работы мышц (рис. 17.25).

Рис. 17.25. А. Отношения между АТФ, креатинфосфатом и процессом дыхания при сокращении мышцы. МК — молочная кислота; ПК — пировиноградная кислота; Кр — креатин; КрФ — креатинфосфат. Б. Потребность в кислороде при физической работе. Показано соотношение между потреблением кислорода и созданием кислородной задолженности

17.5. Иннервация скелетной мышцы

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука