Для перемещения конечности в том и другом направлении нужны по меньшей мере две противоположно действующие мышцы или группы мышц. Когда одна из них сокращается, другая должна расслабляться. Достигается это благодаря простым тормозным рефлексам. Как мы уже видели, сигналы, возникшие в мышечном веретене, поступают от мышцы по афферентному нейрону в спинной мозг и в конце концов возвращаются к той же мышце и вызывают ее сокращение. Афферентный нейрон образует также синапсы с промежуточными нейронами в сером веществе спинного мозга (рис. 17.29). При соответствующей стимуляции они блокируют эфферентные нейроны, идущие к мышце-антагонисту, и эта мышца, таким образом, оказывается неспособной к сокращению и остается расслабленной.
Рис. 17.29. Реципрокное торможение. При сокращении мышцы А импульсы направляются в спинной мозг, где они передаются на промежуточный тормозный нейрон; торможение им соответствующего двигательного нейрона, иннервирующего мышцу Б, заставляет эту мышцу расслабиться
Хорошим примером может служить механика ходьбы. Сначала конечность сгибается, чтобы стопа оторвалась от земли. Во время сгибания мышцы-антагонисты — разгибатели — растягиваются, но рефлекторное торможение делает их сокращение невозможным. Затем согнутая конечность выпрямляется и стопа вновь опускается на землю. По окончании сокращения мышц-сгибателей торможение с мышц-разгибателей снимается, и теперь становится возможным рефлекс на растяжение, приводящий к сокращению мышцы-разгибателя. Когда конечность выпрямлена, мышечное веретено разгибателя не подвергается больше растяжению и рефлекс на растяжение исчезает. После этого весь процесс может начаться снова.
17.5.6. Сухожильные рецепторы
Рецепторы растяжения есть и в сухожилиях, однако они реагируют только на очень сильное растяжение. Импульсы от них поступают в центральную нервную систему и воздействуют на тормозные промежуточные нейроны, которые затормаживают сокращение мышцы и ее активное противодействие растяжению. Этот процесс очень важен, так как он предотвращает повреждение мышц, возможное при внезапной перегрузке или при излишне сильном сокращении в ответ на большую нагрузку.
17.6. Различные способы локомоции у беспозвоночных
17.6.1. Амебоидное движение
Для амебоидного движения характерно образование в клетке временных выступов — так называемых псевдоподий
. Этим способом перемещаются простейшие класса Rhizopoda и лейкоциты (белые кровяные клетки) позвоночных. При движении в клетке намечается "передний" конец — место, где образуются новые псевдоподии. Изучение амебы показало, что ее цитоплазма состоит из наружного вязкого слоя — плазмагеля, или эктоплазмы, которым окружен более жидкий слой — плазмазоль, или эндоплазма. Как полагают, движение происходит благодаря поочередным изменениям коллоидного состояния цитоплазмы, обусловленным переходами золь гель, и перетеканию плазмазоля в псевдоподию (разд. 4.1). В месте образования псевдоподии плазмагель разжижается, превращаясь в плазмазоль; теперь плазмазоль перетекает в эту часть клетки и дальше во вновь образующуюся псевдоподию. В наружной зоне псевдоподии плазмазоль быстро переходит в плазмагель, образующий вокруг псевдоподии плотный воротничок. В заднем конце амебы плазмагель быстро превращается в плазмазоль и перетекает вперед (рис. 17.30)[3].Рис. 17.30. Образование псевдоподии у амебы. Согласно теории фонтанирования, плазмазоль затвердевает, и образующийся плазмагель сокращается, проталкивая таким образом в псевдоподию еще больше плазмазоля