Читаем Биология. В 3-х томах. Т. 3 полностью

Рис. 17.39. Поперечный разрез через грудь насекомого (вид спереди). Показаны отношения между крыльями, стенками груди и мышцами при полете


У крупных крылатых насекомых, таких как бабочки или саранча, крылья совершают от 5 до 50 взмахов в секунду (табл. 17.5). У них отдельные сокращения мышц вызываются одиночными нервными импульсами. Импульсы здесь генерируются с частотой, равной частоте взмахов. Летательные мышцы, работающие таким образом, называются синхронными. У комнатной мухи, у которой частота взмахов составляет 120-200 в 1 с, летательные мышцы должны работать слишком быстро для того, чтобы каждое сокращение могло быть ответом на отдельный нервный импульс. Такие мышцы называются асинхронными, и к ним поступает один нервный импульс приблизительно на 40 взмахов крыла; эти импульсы нужны для поддержания мышцы в активном состоянии во время полета. Такая мышца может дольше сокращаться и развивать большую мощность, чем синхронная мышца.

Таблица 17.5. Скорость работы крыльев у разных насекомых

Как общее правило, чем меньше насекомое, тем быстрее оно машет крыльями. У многих насекомых (у саранчи, стрекоз и др.) две пары крыльев. В некоторых случаях (например, у пчел) обе пары работают синхронно; в других случаях задняя пара несколько опережает переднюю, как, например, у саранчовых. У других насекомых (мухи, жуки) только одна пара крыльев. У комнатной мухи задние крылья редуцированы и превращены в жужжальца — булавовидные образования, выполняющие сенсорную функцию. Во время полета они быстро колеблются, воспринимают аэродинамические силы и доставляют информацию, необходимую для поддержания стабильности полета. У некоторых (очень немногих) насекомых, например у блох, крыльев нет совсем. Асинхронная мышца способна автоматически сокращаться в ответ на растяжение (так называемый рефлекс на растяжение), не дожидаясь очередного нервного импульса.


Асинхронный полет детально изучил Буттигер у мухи Sacrophaga bullata. При полете по прямой линии крылья у нее описывают в воздухе "восьмерку". Тягу и подъемную силу в основном создает движение крыльев вниз; при этом крылья смещаются также вперед, и задний их край несколько приподнят по отношению к переднему. При подъеме крыло движется вверх и назад и его задний край опущен по отношению к переднему. В таком положении крыло испытывает наименьшее сопротивление воздуха и в то же время обеспечивает большую подъемную силу.

При подъеме крыла сокращаются дорсовентральные мышцы. В результате тергит опускается и место сочленения крыла с тергитом оказывается ниже сочленения его с боковой стенкой груди (рис. 17.39). Сопротивление тергита его смещению вначале возрастает. Однако в критический момент сопротивление исчезает и крыло щелчком "перескакивает" в поднятое положение. При этом продольные мышцы растягиваются, что приводит к их немедленному рефлекторному сокращению. Теперь тергит выгибается вверх, и место соединения его с крылом оказывается выше сочленения крыла с боковой стенкой. Сопротивление такому смещению опять-таки преодолевается "щелчком", и крыло совершает резкое движение вниз. При этом дорсовентральные мышцы в свою очередь подвергаются растяжению, что заставляет их сократиться, и весь цикл повторяется снова.

17.6. У насекомых в летательных мышцах саркоплазматический ретикулум для увеличения поверхности оказывается продырявленным через определенные интервалы. Как можно объяснить смысл этого?

17.7. Можно ли ожидать, что объем саркоплазматического ретикулума в синхронных и асинхронных мышцах окажется различным? Аргументируйте свой ответ.

17.7. Локомоция позвоночных

17.7.1. Плавание рыб

Относительная плотность воды, особенно морской, очень высока и во многие сотни раз превышает плотность воздуха. Вода представляет собой относительно вязкую среду для перемещения в ней, но благодаря своей плотности она может обеспечивать опору для тела рыбы, а также служит субстратом, от которого рыба может отталкиваться при плавании.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука