Представим себе огороженный участок леса, в котором обитают лисы и зайцы. Предположим, что травы там более чем достаточно, так что зайцы не испытывают недостатка в корме, и нам не придется учитывать эту сторону вопроса. Это упростит решение задачи. Зайцы живут и размножаются. У лис тоже есть пища, и они тоже размножаются. Но когда число лис значительно увеличится, они станут истреблять зайцев в большем количестве, и число тех уменьшится. После этого лисы начнут голодать, некоторые из них погибнут, скорость размножения их понизится. Это приведет к вымиранию лис, и в результате уменьшится число истребляемых ими зайцев. Последних опять станет много, у лис снова появится пища, они будут быстро размножаться, уничтожать зайцев и т. д.
Как показывает этот забавный мысленный эксперимент, динамическое равновесие в данном сообществе так и не наступает: в нем происходят лишь периодические колебания. Это можно доказать математически или, что значительно легче, смоделировать и рассчитать на ЭВМ. Не вдаваясь в детали сложных математических выкладок, рассмотрим результаты таких расчетов. Их можно изобразить графически двумя способами. Если представить количество тех и других животных в зависимости от времени, то мы получим синусоидные кривые; если же на график нанести число зайцев в зависимости от численности лис, то получится так называемый годограф. Если много лис и мало зайцев, точка на годографе скользит направо вниз; зайцы размножились — точка передвинулась налево вверх. Так как синусоиды на верхнем рисунке сдвинуты относительно друг друга, точка на годографе описывает замкнутую кривую. Такой график в честь уже упоминавшегося нами ученого назван циклом Вольтерра. Разумеется, цикл Вольтерра никогда не может касаться оси координат, ибо это значило бы, что вид вымер. В таком случае игра пришла бы к естественному концу. В некоторых случаях кривая представляет собой не замкнутый цикл, а спираль. Это значит, что происходит сдвиг соотношения в пользу одного из видов.
Мы снова приблизились к той границе, где сегодня кончаются наши возможности разумного использования математики в биологии. Расчеты наземных и водных сообществ живых организмов имеют огромное значение для народного хозяйства, но они чрезвычайно сложны. Сейчас такие расчеты пытаются производить только в микробиологии и гидробиологии, где они связаны с проблемами рыбного хозяйства, очистки вод и охраны окружающей среды.
Теоретическое обоснование колебаний, возникающих в экологических системах, появилось лишь после работ Вольтерра, хотя о существовании таких колебаний было известно уже давно. Еще в средние века люди знали, что эпидемии чумы и холеры, против которых они были бессильны, вспыхивают и затухают периодически, волнами. Такие колебания издавна известны и в экологии. Вероятно, большую роль играют здесь сезонные изменения климата.
Чтобы рассчитать подобные явления, происходящие в окружающем нас мире, необходимо осилить чрезвычайно сложные системы уравнений, правильное решение которых далеко не всегда определяется лишь возможностями вычислительной техники. Чем сложнее уравнения, тем большая неопределенность появляется в результатах расчетов, так как даже небольшие изменения каждого из многочисленных коэффициентов приводят к сильной деформации кривой на графике. Для того чтобы произвести оценки, которые могут оказаться полезными для практики, необходимо решить еще множество теоретических вопросов.
Колебательные процессы, которые мы для наглядности рассмотрели на примере из области экологии, можно встретить также на молекулярном и клеточном уровнях. В особенности это касается ферментативных реакций с характерными для них нелинейными зависимостями. Спектр таких экспериментально обнаруженных и теоретически рассчитанных явлений чрезвычайно широк. Так, регулярные отклонения в клеточных процессах, например периодические изменения концентраций, вызывают колебания, сходные с качанием маятника часов. Во многих случаях такие колебания служат индикатором времени для биологических ритмов. Так называемые "биологические часы", т. е. суточные и сезонные колебания биологической активности, несомненно, объясняются теми же явлениями.