Это уравнение напоминает уже знакомое нам линейное уравнение потока. И действительно, мы опять получили линейную зависимость, но на сей раз без отрицательного знака. Это означает, что в отличие от предыдущего примера, где количество воды в сосуде течением времени уменьшалось, в данном случае число микроорганизмов увеличивается.
Мы не будем заниматься интегрированием этого равнения. Представленная на рисунке формула есть частное решение его для случая, когда количество бактерий в начале опыта, т. е. в момент времени t = 0, было равно n0
. В приведенной формуле появилась новая величина — число е. Это иррациональное число, т. е. число, которое нельзя выразить в виде отношения двух целых чисел; оно равно 2,71828… и является основанием так называемого "натурального" логарифма; им широко пользуются математики. О числе е можно рассказать много интересного, но это уже не имеет никакого отношения к биологии. Вместо е в нашей формуле можно было бы использовать любое другое число, однако в таком случае и величина k стала бы другой.Как видно, количество клеток n является функцией времени t причем время t в формуле входит в показатель степени. Вообще говоря, прежние наши уравнения также представляют собой экспоненциальные (степенные) функции, в которых k отрицательно, что указывает не на возрастание, а на уменьшение значения функции со временем.
Итак, размножение клеток. Сначала происходящее несколько обескураживает нас. Через каждый промежуток времени концентрация клеток удваивается! К чему же это приведёт в конце концов? Кривая поднимается круче и круче. Это напоминает знаменитую пшенную кашу из сказки о волшебном горшке, которая переполнила дом и вытекла на улицу. Такое может случиться и с маминым тестом и с папиным вином, которое бродит в бутыли. Видимо, наше уравнение в лучшем случае описывает только начало процесса, а затем процесс размножения клеток идет как-то иначе. Что же мы не учли в наших рассуждениях? На самом деле происходит следующее: когда достигается определенная концентрация клеток, питательные вещества среды исчерпываются и бактерии начинают размножаться медленнее, а потом и вовсе прекращают делиться. Как это учесть в уравнении?
Вначале мы приняли, что k — коэффициент пропорциональности, отражающий скорость деления клеток в определенных условиях. Но когда условия ухудшаются, величина k должна уменьшаться. Говоря математическим языком, k теперь уже не постоянная величина, она зависит от числа клеток n. И чтобы идти дальше, нам придется сначала выяснить, какова зависимость k от n. Предположим, что величина k состоит из двух слагаемых. Одно из них пусть будет постоянно; обозначим его k1
и предположим, к примеру, что с ним связаны некие наследственно закрепленные свойства вида, не зависящие от внешних условий. Второе слагаемое отрицательно, и его абсолютная величина возрастает с увеличением числа клеток; обозначим его k2n и будем подразумевать, что за ним кроется какой-либо фактор, сдерживающий развитие, например, борьба за существование или, в нашем случае, борьба за пищу.Итак,
и дифференциальное уравнение принимает вид
Это уже нелинейное дифференциальное уравнение, в которое входит n2
. Чтобы показать, насколько усложняет решение это маленькое дополнение, на рисунке представлено экспоненциальное уравнение, связывающее величины n и t. Но самое важное здесь — новый вид кривой: после быстрого начального подъема кривая стремится к горизонтальной линии, соответствующей равновесному состоянию. Если читатель обладает некоторыми познаниями в алгебре, он может при желании с помощью этого уравнения провести анализ кривой. Легко показать, что при малых значениях t уравнение превращается в простое уравнение экспоненциального роста. При больших же значениях t нелинейные соотношения между скоростью прироста и общей численностью особей (популяцией) приводят к тому, что кривая загибается.Такое нелинейное поведение популяции растущих, размножающихся организмов или целого биоценоза, живого сообщества, типично для высших уровней биологической организации. Особенно интересные взаимоотношения возникают там, где один вид животных служит кормом для другого. Зависимость "хищник — жертва" около 50 лет назад рассчитал французский ученый Вольтерра, и с тех пор она неоднократно становилась предметом обсуждения.