Хотя Битва при черной дыре должна была окончиться еще в начале 1998 года, Стивен Хокинг уподобился тем несчастным солдатам, которые годами скрывались в джунглях, не зная, что военные действия прекратились. Но на этот раз он стал трагической фигурой. Пятидесятишестилетний, уже прошедший пик своей интеллектуальной формы и почти неспособный общаться, Стивен не улавливал сути дела. Уверен, что это не было связано с ограниченностью его интеллекта. Из тех контактов, которые у меня были с ним после 1998 года, стало ясно, что его разум остается исключительно острым. Но его физические возможности настолько ослабли, что он оказался почти полностью замкнут в собственной голове. Не имея возможности записывать уравнения и испытывая колоссальные трудности при общении с коллегами, он должен был столкнуться с тем, что не может проделать те вещи, которые обычно выполняют физики, чтобы разобраться в новой, незнакомой им работе. Поэтому Стивен еще некоторое время продолжал борьбу.
Вскоре после публикации статьи Виттена в Санта-Барбаре состоялась еще одна конференция, на этот раз чтобы отметить голографический принцип и открытие Малдасены. Послеобеденным докладчиком был Джефф Харвей (Н из CGHS), однако вместо речи он призвал всех исполнить победную песнь «Малдасена», которая поется и танцуется на манер «Макарены»[153].
23
Ядерная физика? Вы шутите!
Скептики отметят, что все рассказанное мной о свойствах черных дыр — от энтропии, температуры и хокинговского излучения до дополнительности черных дыр и голографического принципа — это чистая теория без единого грана подтверждающих ее экспериментальных данных. Увы, скептики еще очень долго могут оставаться правы.
Но тут надо сказать, что совершенно неожиданная взаимосвязь между черными дырами, квантовой гравитацией, голографическим принципом, с одной стороны, и экспериментальной ядерной физикой — с другой, может раз и навсегда опровергнуть утверждение о том, что эти теории лежат за рамками возможного научного подтверждения. На первый взгляд ядерная физика кажется совершенно бесперспективным местом для проверки таких идей, как голографический принцип и дополнительность черных дыр. Ядерная физика давно не находится на переднем краю исследований. Большинство физиков, и я в их числе, полагали, что эта старая область науки исчерпала свой потенциал и уже не сможет научить нас чему-то новому относительно фундаментальных законов природы. С точки зрения современной физики ядра — это что-то вроде зефира: большие рыхлые шары, по большей части пустые внутри. Что они могут нам сказать о физике планковского масштаба? Совершенно неожиданно оказалось, что довольно много.
Струнные теоретики всегда интересовались ядрами. Вся предыстория теории струн была связана с адронами: протонами, нейтронами, мезонами и глюболами. Подобно ядрам, эти частицы большие, рыхлые и состоят из кварков и глюонов. Похоже, что на масштабе, в сто миллиардов миллиардов раз крупнее планковского, природа повторяет саму себя. Математика адронной физики оказалась почти такой же, как математика теории струн. Это кажется совершенно удивительным, если принять во внимание огромную разницу в масштабах: нуклоны могут быть в 1020 раз больше фундаментальных струн и колеблются в 1020 раз медленнее. Как могут эти теории быть одинаковыми или даже отдаленно похожими? Тем не менее в определенном смысле это именно так. И если обычные субатомные частицы в самом деле похожи на фундаментальные струны, почему бы нам не проверять идеи теории струн в ядерных лабораториях? В действительности это уже делается почти сорок лет.
Связь между адронами и струнами — это одна из основ современной физики элементарных частиц, но до самого недавнего времени было невозможно проэкспериментировать с ядерным аналогом физики черных дыр. Сейчас ситуация меняется.