За пределами Лонг-Айленда, примерно в сотне километров от Манхэттена, ядерные физики Брукхевенской национальной лаборатории сталкивают тяжелые атомные ядра и смотрят, что получится в результате. Релятивистский коллайдер тяжелых ионов RHIC[155] разгоняет ядра золота почти до скорости света, так что при столкновении они дают колоссальный выплеск энергии с температурой в сотни миллионов раз выше, чем на поверхности Солнца. Брукхевенские физики не интересуются ядерным оружием или какими-то еще ядерными технологиями. Их мотив — чистое любопытство, изучение свойств новой формы материи. Как ведет себя это горячее ядерное вещество? Является ли оно газом? Жидкостью? Остается ли оно в связанном состоянии или немедленно испаряется, распадаясь на отдельные частицы? Вылетают ли оттуда струи чрезвычайно энергичных частиц?
Как я уже сказал, ядерная физика и квантовая гравитация действуют в совершенно несопоставимых масштабах, но какая же тогда между ними может быть взаимосвязь? Лучшая известная мне аналогия связана с одним из худших фильмов, старым ужастиком эпохи драйв-ин кинотеатров[156]. В центре сюжета были мухи-монстры. Я не знаю, как делался этот фильм, но предполагаю, что снималась обычная домашняя муха, которую потом увеличивали так, чтобы она занимала весь экран. Изображение воспроизводилось в замедленном показе, из-за чего муха воспринималась как отвратительная огромная птица. Результат был ужасен, но если вернуться к нашей теме, то это почти идеальная иллюстрация связи между гравитонами и глюболами. И те и другие — замкнутые струны, но гравитон гораздо меньше и быстрее глюбола — примерно в 1020 раз меньше и быстрее. Кажется, адроны очень похожи на образы фундаментальных струн, только раздутые и замедленные, — не в сотни раз, как мухи, а в фантастические 1020 раз.
Так что если мы не можем для порождения черных дыр сталкивать с колоссальной энергией частицы планковского размера, то, возможно, у нас получится сталкивать их раздутые версии — глюболы, мезоны или нуклоны, — так чтобы создать увеличенную версию черной дыры. Но погодите, не потребуется ли для этого громадное количество энергии? Нет, не потребуется, а чтобы понять почему, надо вспомнить описанную в главе 16 контринтуитивную связь между размером и массой:
Чтобы понять, в каком смысле можно говорить о создании черных дыр на RHID, нам надо вернуться к голографическому принципу и открытию Хуана Малдасены. Совершенно неожиданным для всех способом Малдасена обнаружил, что две разные математические теории в действительности были одной и той же, то есть они оказались «дуальны друг другу», если пользоваться теорструнным жаргоном. Одна из теорий была собственно теорией струн с гравитонами и черными дырами, но только в (4 +1) — мерном антидеситтеровском пространстве (АДС). (В той главе для простоты иллюстрирования я позволил себе вольность и уменьшил число пространственных измерений. В этой главе я восстанавливаю недостающие измерения.)
Четырех пространственных измерений для ядерной физики многовато, но вспомните голографический принцип: все, что происходит в АДС, должно полностью описываться математической теорией с пространственной размерностью на единицу меньше. Поскольку Малдасена начал с четырех пространственных измерений, дуальная голографическая теория имеет только три измерения — столько же, сколько и наше обычное пространство. Может ли это голографическое описание быть похожим на теории, которые мы используем в обычной физике?
Ответ оказывается утвердительным: голографическое дуальное описание математически очень похоже на квантовую хромодинамику (КХД) — теорию кварков, глюонов, адронов и ядер.
Квантовая гравитация в АДС ↔ КХД
Для меня самым интересным в работе Малдасены было то, каким образом она подтвердила голографический принцип, пролив свет на работу квантовой гравитации. Но Малдасена и Виттен увидели другую возможность. Их догадка, надо сказать — совершенно блестящая, состояла в том, что голографический принцип — это улица с двусторонним движением. Почему бы не применить его в обратном направлении? То есть использовать наши знания о гравитации — в данном случае о гравитации в (4 + 1) — мерном АДС-пространстве, — чтобы узнать нечто новое о привычной квантовой теории поля. Для меня это был совершенно неожиданный поворот, бонус к голографическому принципу, о котором я никогда не задумывался.