Угол поворота ограничен геометрией (на 180°, к примеру, поток разворачивать просто бессмысленно), а окружная скорость — сверхзвуковой скоростью на концах лопаток (волновые потери сильно снижают эффективность преобразования скорости в давление). Таким образом, для уменьшения количества ступеней компрессора и турбины стараются иметь максимально возможную окружную скорость. Если двигатель двухконтурный, то вентилятор и компрессор высокого давления имеют разные диаметры из-за разного расхода воздуха через них. Значит, при одинаковой окружной скорости эти нагнетатели (и вентилятор, и компрессор) будут иметь разные обороты, и чем больше степень двухконтурности, тем больше эта разница. То есть в двухконтурных двигателях минимальное количество роторов, а следовательно, и валов, равно двум.
Исключением является французский двухконтурный одновальный двигатель военного назначения М-53. Здесь пошли на снижение эффективности компрессора высокого давления ради уменьшения количества трудноохлаждаемых «горячих» опор-подшипников — двигатель применяется на сверхзвуковом самолете, да и степень двухконтурности у него невысокая, соответственно невелика и разница диаметров вентилятора и компрессора.
Кроме того, со сжатием воздуха в каждой последующей ступени повышается его температура, а следовательно, увеличивается скорость звука. Поэтому мы можем допустить увеличение окружной скорости в каждой последующей ступени ротора компрессора без боязни увеличения волновых потерь. То есть теоретически каждую следующую ступень компрессора желательно вращать с большей окружной скоростью — уровень волновых потерь это допускает. Иначе, сколько ступеней компрессора — столько должно быть роторов с точки зрения минимизации числа ступеней. Но… при этом кратно увеличивается количество подшипниковых опор, нормальную работу которых при больших окружных скоростях и высоких температурах обеспечивать трудно. Таким образом, один-два ротора для одноконтурного и два-три ротора двухконтурного двигателя — это устоявшаяся практика. При этом в случае длинных валов их часто делают разрезными, каждый на двух опорах. Поэтому даже при двух роторах количество опор может быть не четыре, а больше — например, семь (по две на каждый компрессор, три — на две турбины, где одна из опор — общая, межвальная).
Так вот, при проектировании JT9D отказались от разрезных валов, приняв решение: два ротора — четыре подшипниковых узла. Все бы хорошо, но вскоре оказалось, что «паразитные», «лишние» опоры в разрезных валах через свои силовые связи подобно обручам увеличивали жесткость корпусов двигателя. Как только их убрали, корпус компрессора стало «корежить», превращая его из круглого в овальный. А из-за этого пришлось увеличивать радиальные зазоры между лопатками компрессора и корпусом и катастрофически терять кпд. Корпус компрессора на двигателе JT9D пришлось усиливать с помощью продольной балки-«ухвата», ставшей с тех пор атрибутом двигателей с большой степенью двухконтурности. В общем, классическая ошибка конструктора, обусловленная, как уже отмечалось, всегдашней нехваткой времени. Все просчитать невозможно, и многие решения принимаются интуитивно.
Ниже в таблице без комментариев представлены три наилучших компрессора конца 1950-х гг., воплощающих в себе разные приоритеты (школы) проектирования: минимальное количество ступеней (а следовательно, и массы, и стоимости), максимальную степень сжатия, оптимальное сочетание того и другого. Чем выше степень сжатия в двигателе, тем он экономичнее. Выбирайте, что вам нравится. Каждый вариант имеет свои достоинства и недостатки. Для сравнения в последней строке таблицы представлен достигнутый на сегодня (XXI век) уровень проектирования компрессоров. ЕЗЕ — это европейский газогенератор, «сердце» перспективных двигателей следующего поколения, проектируемых на выполнение «трех Е»: эффективность, экология и энергосбережение. В этом проекте реализованы все последние достижения науки и техники в области авиационного двигателестроения. Следует отметить, что немецкие аэродинамики и конструкторы сохранили свои ведущие позиции в проектировании компрессоров и сегодня.
№ п/п | Двигатель | Кол-во ступеней | Степень сжатия | Кол-во валов | Особенности |
1 | Р11-300 (ОКБ-300) | 6(3+3) | 9 | 2 | Сверхзвуковая ступень |
2 | J-79-GE («Дженерал Электрик») | 17 | 13 | 1 | 7 поворотных рядов лопаток статора |
3 | J-75-PW («Пратт-Уитни») | 15 (9+6) | 12,5 | 2 | |
4 | ВД-7 (ОКБ-36) | 9 | 10 | 1 | Сверхзвуковая ступень, 2 поворотных ряда лопаток статора |
5 | ЕЗЕ | 9 | 22 | 1 |