Прошла половина периода (25 лет) классической инновационной волны развития авиационных турбореактивных двигателей. Наступил 1970 г., в котором можно было ожидать инноваций или… стабилизации, перехода к «сумме технологий», перехода от фазы доминирования инженеров к фазе доминирования менеджеров и разработчиков стандартов. Некоторая успокоенность в научно-инженерной среде в это время имела место — казалось, что при достигнутом достаточно высоком уровне эффективности узлов ничего нового придумать уже невозможно. В ЦИАМе, да и в отрасли в целом, в основном стали заниматься формализацией применяемых технологий проектирования двигателей, т. е. разрабатывать стандарты. Хотя в ретроспективе становится понятно, что некие признаки грядущих инноваций были налицо. Но на некоторые инновационные предложения, возникающие, как правило, вне рутинной среды ОКБ, посматривали свысока. Автор этих строк помнит из личного опыта, как в моторном ОКБ примерно в это время снисходительно рассматривали предложение одного научного сотрудника из Казанского авиационного института перейти к трехмерным расчетам течений в газовой турбине, т. е. к тому, что через 15 лет стало обязательной технологией, получившей название 3D-проектирование.
Проспали время не только ОКБ, но и ведущий научный институт отрасли ЦИАМ. Впрочем, такая самоуспокоенность наблюдается иногда не только в нашем отечестве, но и за рубежом. Вспомним, как в США «проспали» начало инновационной волны турбореактивных двигателей. После войны в Великобритании вначале снисходительно отнеслись к немецким разработкам охлаждаемых лопаток турбин. Макс Бентеле, автор одной из конструкций охлаждаемых лопаток, предлагал англичанам, по сути, совершить рывок в области температуры газа перед турбиной, используя этот опыт, но… англичане были страшно горды созданием жаропрочного никелевого сплава и поэтому считали, что охлаждение — это технология «нищих».
К 1970 году зашла в тупик и разработка гидромеханических систем автоматического управления двигателями, ведущих свою родословную от ранних немецких двигателей. Надо понимать, что, казалось бы, простая функция определения, сколько топлива нужно подать в двигатель, на самом деле превращается в создание сложного счетно-решающего устройства. Это связано с тем, в частности, что в авиационном двигателе изменяется не только режим работы (обороты) и меняется очень динамично («энергично», как говорят в Летно-исследовательском институте, г. Жуковский) в зависимости от желания летчика. Изменяются и внешние условия: высота полета (а вместе с ней давление и температура окружающего воздуха) и скорость полета самолета. Это, в свою очередь, приводит к изменению плотности воздуха, являющегося рабочим телом двигателя. Изменение плотности воздуха тоже надо учитывать при определении потребного расхода топлива. Кроме расхода топлива, в двигателях нового поколения широко применялась и механизация, т. е. управление положением статорных лопаток компрессора, створок регулируемого сопла и т. д.