Великий французский математик Лаплас так высказался по этому вопросу 100 лет назад: «Основание нашей системы нумерации не делится на 3 и на 4, то есть на два делителя, весьма употребительные по их простоте. Присоединение двух новых знаков (цифр) дало бы системе счисления это преимущество; но такое нововведение было бы, несомненно, отвергнуто. Мы потеряли бы выгоду, породившую нашу арифметику, – именно возможность счета по пальцам рук».
Напротив, следовало бы ради единообразия перейти также в измерении дуг от употребительных градусов и минут к новым, десятичным.
Такую реформу пытались провести во Франции, но она не привилась. Не кто иной, как упомянутый Лаплас, был горячим сторонником этой реформы. Его знаменитая книга «Изложение системы мира» последовательно проводит десятичное подразделение углов: градусом он называет не 90-ю, а 100-ю долю прямого угла, минутой – 100-ю часть градуса и т. д. Лаплас высказался даже за десятичное подразделение часов и минут. «Однообразие системы мер требует, чтобы день был разделен на 100 часов, час на 100 минут и минута на 100 секунд», – писал он.
Вы видите, следовательно, что дюжина имеет за собой длинную историю и что число 12 не без основания очутилось в галерее числовых диковинок. Зато его соседка – «чертова дюжина», 13, фигурирует здесь не потому, что чем-либо замечательна, а скорее именно потому, что ничем не замечательна, хотя и пользуется такой мрачной славой: разве не удивительно в самом деле, что ровно ничем не выделяющееся число могло стать столь «страшным» для суеверных людей?
Как было распространено это суеверие (зародившееся в древнем Вавилоне), видно из того, что царское правительство при устройстве электрического трамвая в Петербурге долго не решалось вводить маршрут № 13 и пропустило его, перейдя сразу на № 14: власти думали, что публика не станет ездить в вагонах с таким «роковым» номером. Любопытно и то, что в Петербурге было немало домов, где 13-й номер квартиры был пропущен… В гостинице также нередко отсутствовала комната № 13, заменяемая № 12а. Для борьбы с этим ничем не обоснованным числовым суеверием кое-где на Западе (например, в Англии) учреждались даже особые «клубы числа 13»…
В следующей витрине арифметической кунсткамеры перед нами
Число 365
Оно замечательно не только тем, что определяет число дней в году. Прежде всего, оно при делении на 7 дает в остатке 1; эта несущественная, казалось бы, особенность числа 365 имеет большое значение для нашего семидневного календаря.
Другая особенность числа 365 не связана с календарем:
365 = 10 х 10+ 11 х 11 + 12 х 12,
то есть 365 равно сумме квадратов трех последовательных чисел, начиная с 10-ти:
102 + 112 + 122 = 100 + 121 + 144 = 365.
Но и это еще не все – тому же равна сумма квадратов двух следующих чисел – 13 и 14:
132 +142 = 169 + 196 = 365.
На этом свойстве числа 365 основана задача С.А. Рачинского, изображенная на известной картине «Трудная задача» Богданова-Вельского:
Таких чисел не много наберется в нашей галерее арифметических диковинок.
Три девятки
В следующей витрине выставлено наибольшее из всех трехзначных чисел: 999.
Любопытная особенность числа 999 проявляется при умножении на него всякого другого трехзначного числа. Получается шестизначное произведение: первые три цифры которого есть умножаемое число, только уменьшенное на единицу, а остальные три цифры – дополнения первых до 9. Например:
Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:
Зная эту особенность, мы можем «мгновенного» умножать любое трехзначное число на 999:
947 х 999 = 846153
509 х 999 = 508491
981 х 999 = 980019 и т. д.
А так как
999 = 9 х 111 = 3 x 3 x 3 x 37,
то вы можете, опять-таки с молниеносной быстротой, писать целые колонны шестизначных чисел, кратных 37; незнакомый со свойствами числа 999, конечно, сделать этого не в состоянии. Короче говоря, вы можете устраивать перед непосвященными маленькие сеансы «мгновенного умножения и деления».
Число Шехеразады
Следующим на очереди у нас 1001, прославленное число Шехеразады. Вы, вероятно, и не подозревали, что в самом названии сборника волшебных арабских сказок заключается также своего рода чудо, которое могло бы поразить воображение сказочного султана не менее многих других чудес Востока, если бы он способен был интересоваться арифметическими диковинками.
Чем же так замечательно число 1001? С виду оно кажется весьма обыкновенным. Оно даже не принадлежит к избранному разряду так называемых «простых» чисел. Оно делится без остатка, на 7, на 11 и на 13 – на три последовательных простых числа, произведением которых оно и является. Не в том диковинка, что число 1001 = 7 x 11 x 13, – здесь нет еще ничего волшебного. Замечательнее то, что при умножении на него трехзначного числа получается результат, состоящий из умноженного числа, только написанного дважды, например:
873 х 1001 = 873873;
207 х 1001 = 207207 и т. д.