Быстро следует введение и всеобщее признание остальных знаков (степени, корня, скобок и т. д.). К середине 17 в. полностью сложился аппарат символов современной А. — употребление букв для обозначения не только искомого неизвестного, но и всех вообще входящих в задачу величин. До этой реформы, окончательно закрепленной Ф.
Содержание А. охватывало во время Диофанта уравнения 1-й и 2-й степеней. К уравнениям 2-й степени (т. н. квадратным) древнегреческие математики пришли, по-видимому, геометрическим путём, т. к. задачи, приводящие к этим уравнениям, естественно, возникают при определении площадей и построении окружности по различным данным. Однако в одном, очень существенном отношении решение уравнений у древних математиков отличалось от современного: они не употребляли отрицательных чисел. Поэтому даже уравнение 1-й степени (с точки зрения древних)не всегда имело решение. При рассмотрении уравнений 2-й степени приходилось различать много частных случаев (по знакам коэффициентов). Решающий шаг — применение отрицательных чисел — был сделан индийскими математиками (10 в.), но ученые средневекового Востока не пошли по этому пути. С отрицательными числами свыклись постепенно; этому особенно способствовали коммерческие вычисления, в которых отрицательные числа имеют наглядный смысл убытка, расхода, недостатка и т. д. Окончательно же отрицательные числа были приняты только в 17 в., после того как Декарт воспользовался их наглядным геометрическим представлением для построения аналитической геометрии.
Возникновение
Итак, если оставить в стороне мнимые числа, то к 18 в. А. сложилась приблизительно в том объёме, который до наших дней преподаётся в средней школе. Эта А. охватывает действия сложения и умножения, с обратными им действиями вычитания и деления, а также возведение в степень (частный случай умножения) и обратное ему — извлечение корня. Эти действия производились над числами или буквами, которые могли обозначать положительные или отрицательные, рациональные или иррациональные числа. Указанные действия употреблялись в решении задач, по существу сводившихся к уравнениям 1-й и 2-й степеней. Теперь А. в этом объёме владеет каждый образованный человек. Эта «элементарная» А. применяется повседневно в технике, физике и др. областях науки и практики. Но содержание науки А. и её приложений этим далеко не ограничивается. Трудны и медленны были только первые шаги. С 16 в. и особенно с 18 в. начинается быстрое развитие А., а в 20 в. она переживает новый расцвет.
На русском языке изложение элементарной А. в том виде, как она сложилась к началу 18 в., было впервые дано в знаменитой «Арифметике» Л. Ф.