Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного? Например, через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий — сложения, вычитания, умножения и деления. В таком более широком понимании Галуа теория
продолжает развиваться вплоть до нашего времени. С чисто практической стороны для вычисления корней уравнения по заданным коэффициентам не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. Численное решение уравнений
пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (например, в астрономии и технике) и сами коэффициенты обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью. Приближённое вычисление корней алгебраических уравнений является важной задачей вычислительной математики, и к настоящему времени разработано огромное число приёмов её решения, в частности с использованием современной вычислительной техники. Но математика состоит не только из описания способов вычисления. Не менее важна — даже для приложений — другая сторона математики: уметь чисто теоретическим путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебраических уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положительные и отрицательные числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действительных чисел; например, уравнение x2
+ 2 =
0 не может быть удовлетворено ни при каком положительном или отрицательном х,
т. к. слева всегда окажется положительное число, а не нуль. Представление решения в виде
не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицательного числа. Именно такого рода задачи и натолкнули математиков на т. н. мнимые числа. Ещё раньше отдельные смелые исследователи ими пользовались, но окончательно они были введены в науку только в 19 в. Эти числа оказались важнейшим орудием не только в А., но и почти во всех разделах математики и её приложений. По мере того как привыкали к мнимым числам, они теряли всякую таинственность и «мнимость», почему теперь их и называют чаще всего не мнимыми, а комплексными числами
.
Если допускать и комплексные числа, то оказывается, что любое уравнение n-
й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэффициентами. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в. французским математиком А. Жираром, но первое строгое доказательство её было дано в самом конце 18 в. К. Гауссом
,
с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство основной теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математической науки в целом. Если xi
—
один из корней алгебраического уравненияa0
xn
+ a1
xn-1
+ ... + an
= 0, то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х — xi
.
Из основной теоремы А. легко выводится, что всякий многочлен n-й
степени распадается на n
таких множителей 1-й степени, т. е. тождественно:a
0xn
+ a
1
x
n-1
+ ... +a
n
= a
0
(x
-x
1
)(x
-x
2
) ... (x
-x
n
),причём многочлен допускает лишь одно единственное разложение на множители такого вида.