Читаем Большая Советская Энциклопедия (АЛ) полностью

здесь а и b обозначают числа, х и у — векторы. Множества векторов (в обычном понимании) на плоскости и в пространстве образуют линейные пространства в смысле данного определения. Однако задачи, стоящие перед математикой, заставляют рассматривать многомерные и даже бесконечномерные линейные пространства. Последние (их элементами чаще всего являются функции) составляют предмет изучения функционального анализа . Идеи и методы линейной А. применяются в большинстве разделов математики, начиная с аналитической геометрии и теории систем линейных уравнений. Теория матриц и определителей составляет вычислительный аппарат линейной А.

  О других алгебраических системах, указанных выше, см. соответствующие статьи и литературу при них.

  Д. К.Фаддеев.

  Лит.: История алгебры . Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966.

  Классики науки . Декарт P., Геометрия, пер. с латин., М. — Л., 1938; Ньютон И., Всеобщая арифметика, или книга об арифметических синтезе и анализе, пер. с лат., М., 1948; Эйлер Л., Универсальная арифметика, пер. с нем., т. 1 — 2, СПБ. 1768 — 69; Лобачевский Н. И., Полное собрание сочинений, т. 4 — Сочинения по алгебре, М. — Л., 1948: Галуа Э., Сочинения, пер. с франц., М. — Л., 1936.

  Университетские курсы. Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968: Гельфанд И. М., Лекции по линейной алгебре, 3 изд., М. , 1966: Мальцев А. И., Основы линейной алгебры, М. — Л., 1948.

  Монографии по общим вопросам алгебры. Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1 — 2, М. — Л., 1947; Бурбаки Н., Алгебра, пер. с франц., [гл. 1 — 9], М., 1962 — 66; Курош А. Г., Лекции по общей алгебре, М., 1962.

  Монографии по специальным разделам алгебры. Шмидт О., Абстрактная теория групп, 2 изд., М. — Л., 1933; Курош А. Г., Теория групп, 3 изд., М., 1967; Понтрягин Л. С., Непрерывные группы, 2 изд., М., 1954; Чеботарев Н. Г., Основы теории Галуа, ч. 1 — 2, М. — Л., 1934 — 37; Джекобсон Н., Теория колец, пер. с англ., М., 1947.

Алгебра логики

А'лгебра ло'гики, раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности), и логические операции над ними. А. л. возникла в середине 19 в. в трудах Дж. Буля и развивалась затем в работах Ч. Пирса , П. С. Порецкого , Б. Рассела , Д. Гильберта и др. Создание А. л. представляло собой попытку решать традиционные логические задачи алгебраическими методами. С появлением теории множеств (70-е гг. 19 в.), поглотившей часть первоначального предмета А. л., и дальнейшим развитием математической логики (последняя четверть 19 в. — 1-я половина 20 в.) предмет А. л. значительно изменился. Основным предметом А. л. стали высказывания . Под высказыванием понимается каждое предложение, относительно которого имеет смысл утверждать, истинно оно или ложно. Примеры высказываний: «кит — животное», «все углы — прямые» и т. п. Первое из этих высказываний является, очевидно, истинным, а второе — ложным. Употребляемые в обычной речи логические связки «и», «или», «если..., то...», «эквивалентно», частица «не» и т. д. позволяют из уже заданных высказываний строить новые, более «сложные» высказывания. Так, из высказываний «х > 2», «х £ 3» при помощи связки «и» можно получить высказывание «x>2 и х £ 3», при помощи связки «или» — высказывание «x>2 или х £ 3», при помощи связки «если..., то...» — высказывание «если x > 2, то х £ 3» и т. д. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями.

  Связки. Формулы. В А. л. для обозначения истинности вводится символ и для обозначения ложности — символ Л. Часто вместо этих символов употребляются числа 1 и 0. Связки «и», «или», «если..., то...», «эквивалентно» обозначаются соответственно знаками & (конъюнкция), Ú (дизъюнкция), ® (импликация), ~ (эквивалентность); для отрицания вводится знак - (чёрточка сверху). Наряду с индивидуальными высказываниями, примеры которых приводились выше, в А. л. используются также т. н. переменные высказывания, т. е. такие переменные, значениями которых могут быть любые наперёд заданные индивидуальные высказывания. Далее индуктивно вводится понятие формулы, являющееся формализацией понятия «сложного» высказывания; через А, В, С,... обозначаются индивидуальные, а через X, Y, Z ,... — переменные высказывания. Каждая из этих букв называются формулой. Если знаком * обозначить любую из перечисленных выше связок, а Á и Â суть формулы, то (Á* Â) и  суть формулы. Пример формулы:

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии