Связки и частица «не» рассматриваются в А. л. как операции над величинами, принимающими значения 0 и 1, и результатом применения этих операций также являются числа 0 или 1. Конъюнкция X&Y равна 1 тогда и только тогда (т. и т. т.), когда и Х и Y
XY | X&Y | X\/Y | X®У | Х~Y | |
00 | 1 | 0 | 0 | 1 | 1 |
01 | 1 | 0 | 1 | 1 | 0 |
10 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 1 | 1 | 1 | 1 |
Аналогично устроены таблицы для произвольных функций А. л. Это — т. н. табличный способ задания функций А. л. Сами же таблицы иногда называют истинностными таблицами.
Для преобразований формул в равные формулы важную роль в А. л. играют следующие равенства:
(1) X&Y = Y&X, XÚY = YÚX (закон коммутативности);
(2) (X&Y)&Z = X&(Y&Z), (XÚY)ÚZ = XÚ(YÚZ) (закон ассоциативности);
(3) X&(XÚY) = X, XÚ (Х&У) = X (закон поглощения);
(4) X& (YÚZ) = (X&Y)Ú(X&Z) (закон дистрибутивности);
(5) X&
(6) XÚ
(7) Х®Y ==
Эти равенства, устанавливаемые, например, с помощью истинностных таблиц, позволяют уже без помощи таблиц получать др. равенства. Методом получения последних являются т. н. тождественные преобразования, которые меняют, вообще говоря, выражение, но не функцию, реализуемую этим выражением. Например, при помощи законов поглощения получается закон идемпотентности ХÚХ = X. Упомянутые равенства в ряде случаев позволяют существенно упростить запись формул освобождением от «лишних скобок». Так, соотношения (1) и (2) дают возможность вместо формул (...(Á1
&Á2 )&...)& Ás и (...(Â1 ÚÂ2 )Ú...)Ú Âs использовать более компактную запись Á1 &Á2 &...&Ás и Â1 ÚÂ2 Ú...Âs Первое из этих выражений называется конъюнкцией сомножителей Á1 ,..., Ás , а второе — дизъюнкцией слагаемых Â1 ,..., Âs . Равенства (5), (6), (7) показывают также, что константы 0 и 1, импликацию и эквивалентность, рассматривая их как функции, можно выразить через конъюнкцию, дизъюнкцию и отрицание. Более того, всякая функция А. л. может быть реализована формулой, записываемой с помощью символов
Нормальные формы.
Множество всех формул, в построении которых участвуют переменные высказывания, некоторые из символов &, Ú,®, ~ , - и констант 0 и 1, называются языком над данными символами и константами. Равенства (1) — (7) показывают, что для всякой формулы в языке над &, Ú,®, ~ , - ,0, 1 найдётся равная ей формула в языке над &, Ú,- ,0, 1, например
Особую роль в последнем языке играет класс формул, которые могут быть записаны в виде Á1
ÚÁ2 Ú...ÚÁs , 0 или 1, гдеВажную роль в А. л. и её приложениях играет т. н. сокращённая днф. Днф называется сокращённой, если выполнены следующие условия: 1) в ней нет таких пар слагаемых Ái
и Áj , что всякий сомножитель из Ái имеется и в ÁI ; 2) для всяких двух таких слагаемых Ái и Ái ,из которых один содержит сомножителем некоторое переменное, а другой — отрицание этого переменного (при условии, что в данной паре слагаемых нет другого переменного, для которого это же имеет место), имеется (в этой же днф) слагаемое Ái , равное конъюнкции остальных сомножителей этих двух слагаемых. Всякая днф при помощи равенства (1) — (7) может быть приведена к равной ей сокращённой днф. Например, сокращённой днф для формулы ((X ~ (Y®Z)) ® (X&Z)) является