Читаем Большая Советская Энциклопедия (АЛ) полностью

  Наиболее разработанная часть А. г. — теория алгебраических кривых. Основным бирациональным инвариантом алгебраической кривой является её род. Если алгебраическая кривая плоская, т. е. задаётся в декартовых координатах уравнением F(х, у) = 0, то род кривой g = (m - 1)(m - 2)/2 - d, где m порядок кривой, а d число её двойных точек. Род кривой всегда есть целое неотрицательное число. Кривые рода нуль бирационально эквивалентны прямым, т. е. параметрически могут быть заданы при помощи рациональных выражений. Кривые рода 1 могут быть параметризованы эллиптическими функциями и поэтому называются эллиптическими кривыми. Кривые рода больше 1 могут быть параметризованы с помощью автоморфных функций . Каждая кривая рода g, большего 1, с точностью до бирациональной эквивалентности однозначно определяется 3g - 3 комплексными параметрами, которые сами пробегают некоторое алгебраическое многообразие.

  В многомерном случае наиболее изученный класс алгебраических многообразий образуют абелевы многообразия. Это — замкнутые подмногообразия проективного пространства, являющиеся одновременно группами , причём так, что умножение задаётся рациональными выражениями. Умножение на таком многообразии автоматически оказывается коммутативным. Алгебраическая кривая является абелевым многообразием тогда и только тогда, когда она имеет род 1, т. е. является эллиптической кривой.

  Теория алгебраических кривых и теория абелевых многообразий тесно связаны между собой. Всякая алгебраическая кривая рода, большего 0, канонически погружается в некоторое абелево многообразие, называемое якобиевым многообразием для данной кривой. Якобиево многообразие является важным инвариантом кривой и почти полностью определяет самоё кривую.

  Исторически А. г. возникла из изучения кривых и поверхностей низких порядков. Классификация кривых третьего порядка была дана И. Ньютоном (1704). В 19 в. А. г. постепенно переходит от изучения специальных классов кривых и поверхностей к постановке общих проблем, относящихся ко всем многообразиям. Общая А. г. была построена в конце 19 и начале 20 вв. в трудах немецкого математика М. Нётера, итальянских математиков Ф. Энрикеса, Ф. Севери и др. Своего расцвета А. г. достигает в 20 в. (работы французского математика А. Вейля, американского математика С. Лефшеца и др.). Крупные достижения в А. г. имеют советские математики Н. Г. Чеботарев , И. Г. Петровский , И. Р. Шафаревич .

  А. г. является одним из наиболее интенсивно развивающихся разделов математики. Методы А. г. оказывают огромное влияние на такие смежные с А. г. разделы математики, как теория функций многих комплексных переменных, теория чисел, а также на более далёкие от А. г. разделы математики — такие, как уравнения в частных производных, алгебраическая топология, теория групп и др.

  Лит.: Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., [2 изд.], ч. 1—2, М. — Л., 1947; Чеботарев Н. Г., Теория алгебраических функций, М. — Л., 1948; Ходж В., Пидо Д., Методы алгебраической геометрии, пер. с англ., т. 1—3, М., 1954 — 55; Алгебраические поверхности, М., 1965; WeiI A.. Foundations of algebraic géometry, N. Y., 1946.

  Б. Б. Венков.

Алгебраическая кривая

Алгебраи'ческая крива'я, кривая, задаваемая в декартовых координатах алгебраическим уравнением. См. Алгебраическая геометрия .

Алгебраическая поверхность

Алгебраи'ческая пове'рхность, поверхность, задаваемая в декартовых координатах алгебраическим уравнением. См. Алгебраическая геометрия .

Алгебраическая функция

Алгебраи'ческая фу'нкция, функция, удовлетворяющая алгебраическому уравнению . А. ф. принадлежат к числу важнейших функций, изучаемых в математике. Из них многочлены и частные многочленов [например,

  называются рациональными, а прочие А. ф. — иррациональными. Простейшими примерами последних могут служить А. ф., выражаемые с помощью радикалов [например,

  Однако существуют А. ф., которые невозможно выразить через радикалы [например, функция у = f (х ), удовлетворяющая уравнению: y 5 + 3ух 4 + x 5 = 0]. Примерами неалгебраических, т. н. трансцендентных функций , встречающихся в школьном курсе алгебры, являются: степенная x a (если a иррациональное число), показательная а х , логарифмическая и т. д. Общая теория А. ф. представляет обширную математическую дисциплину, имеющую важные связи с теорией аналитических функций (А. ф. составляют специальный класс аналитических функций), алгеброй и алгебраической геометрией . Самая общая А. ф. многих переменных u = f (x , у , z , ...) определяется как функция, удовлетворяющая уравнению вида:

Ро (х , у , z , ...)u n + P 1 (x , y , z , ...)u n-1 + … +P n (x , y , z , ...) = 0,          (1)

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии