Наиболее разработанная часть А. г. — теория алгебраических кривых. Основным бирациональным инвариантом алгебраической кривой является её род. Если алгебраическая кривая плоская, т. е. задаётся в декартовых координатах уравнением F(х, у) = 0, то род кривой g = (m - 1)(m - 2)/2 - d, где m
В многомерном случае наиболее изученный класс алгебраических многообразий образуют абелевы многообразия. Это — замкнутые подмногообразия проективного пространства, являющиеся одновременно
Теория алгебраических кривых и теория абелевых многообразий тесно связаны между собой. Всякая алгебраическая кривая рода, большего 0, канонически погружается в некоторое абелево многообразие, называемое якобиевым многообразием для данной кривой. Якобиево многообразие является важным инвариантом кривой и почти полностью определяет самоё кривую.
Исторически А. г. возникла из изучения кривых и поверхностей низких порядков. Классификация кривых третьего порядка была дана И. Ньютоном (1704). В 19 в. А. г. постепенно переходит от изучения специальных классов кривых и поверхностей к постановке общих проблем, относящихся ко всем многообразиям. Общая А. г. была построена в конце 19 и начале 20 вв. в трудах немецкого математика М. Нётера, итальянских математиков Ф. Энрикеса, Ф. Севери и др. Своего расцвета А. г. достигает в 20 в. (работы французского математика А. Вейля, американского математика С. Лефшеца и др.). Крупные достижения в А. г. имеют советские математики Н. Г.
А. г. является одним из наиболее интенсивно развивающихся разделов математики. Методы А. г. оказывают огромное влияние на такие смежные с А. г. разделы математики, как теория функций многих комплексных переменных, теория чисел, а также на более далёкие от А. г. разделы математики — такие, как уравнения в частных производных, алгебраическая топология, теория групп и др.
Алгебраическая кривая
Алгебраи'ческая крива'я,
кривая, задаваемая в декартовых координатах алгебраическим уравнением. См.Алгебраическая поверхность
Алгебраи'ческая пове'рхность,
поверхность, задаваемая в декартовых координатах алгебраическим уравнением. См.Алгебраическая функция
Алгебраи'ческая фу'нкция,
функция, удовлетворяющаяназываются рациональными, а прочие А. ф. — иррациональными. Простейшими примерами последних могут служить А. ф., выражаемые с помощью радикалов [например,
Однако существуют А. ф., которые невозможно выразить через радикалы [например, функция