где — импульс свободно движущейся частицы (массы m
). Если частица с энергией E движется в потенциальном поле V (x), не зависящем от времени, то квадрат её импульса (определяемый законом сохранения энергии) равен . Простейшим обобщением уравнения (*) является поэтому уравнение. (7)
Оно называется стационарным (не зависящим от времени) уравнением Шрёдингера и относится к основным уравнениям К. м. Решение этого уравнения зависит от вида сил, т. е. от вида потенциала V
(x). Рассмотрим несколько типичных случаев. 1) V
= const, E > V. Решением является волна де Бройля y = Ceikx, где E - V — кинетическая энергия частицы. 2) Потенциальная стенка:
V
= 0 при х < 0, V
= V1 > 0 при х > 0.
Если полная энергия частицы больше высоты стенки, т. е. E > V1, и частица движется слева направо (рис. 3), то решение уравнения (7) в области x < 0 имеет вид двух волн де Бройля — падающей и отражённой: ,
где
(волна с волновым числом k
= –k0 соответствует движению справа налево с тем же импульсом p0), а при х > 0 — проходящей волны де Бройля:, где .
Отношения |C
1/C2|2 и |C'0/C0|2 определяют вероятности прохождения частицы над стенкой и отражения от неё. Наличие отражения — специфически квантовомеханическое (волновое) явление (аналогичное частичному отражению световой волны от границы раздела двух прозрачных сред): «классическая» частица проходит над барьером, и лишь импульс её уменьшается до значения . Если энергия частицы меньше высоты стенки, E
< V (рис. 4, а), то кинетическая энергия частицы E — V в области х > 0 отрицательна. В классической механике это невозможно, и частица не заходит в такую область пространства — она отражается от потенциальной стенки. Волновое движение имеет др. характер. Отрицательное значение означает, что k — чисто мнимая величина, k = ic, где c вещественно. Поэтому волна eikx превращается в e—cx, т. е. колебательный режим сменяется затухающим (c > 0, иначе получился бы лишённый физического смысла неограниченный рост волны с увеличением х). Это явление хорошо известно в теории колебаний. Под энергетической схемой на рис. 4, а (и рис. 4, б) изображено качественное поведение волновой функции y(х), точнее её действительной части. 3) Две области, свободные от сил, разделены прямоугольным потенциальным барьером
V, и частица движется к барьеру слева с энергией E < V (рис. 4, б). Согласно классической механике, частица отразится от барьера; согласно К. м., волновая функция не равна нулю и внутри барьера, а справа будет опять иметь вид волны де Бройля с тем же импульсом (т. е. с той же частотой, но, конечно, с меньшей амплитудой). Следовательно, частица может пройти сквозь барьер. Коэффициент (или вероятность) проникновения будет тем больше, чем меньше ширина и высота (чем меньше разность V — E) барьера. Этот типично квантовомеханический эффект, называемый туннельным эффектом, имеет большое значение в практических приложениях К. м. Он объясняет, например, явление альфа-распада — вылета из радиоактивных ядер a-частиц (ядер гелия). В термоядерных реакциях, протекающих при температурах в десятки и сотни млн. градусов, основная масса реагирующих ядер преодолевает электростатическое (кулоновское) отталкивание и сближается на расстояния порядка действия ядерных сил в результате туннельных (подбарьерных) переходов. Возможность туннельных переходов объясняет также автоэлектронную эмиссию — явление вырывания электронов из металла электрическим полем, контактные явления в металлах и полупроводниках и многие др. явления.