Читаем Большая Советская Энциклопедия (КВ) полностью

являющимся уравнением движения в К. м. Это уравнение называется временным уравнением Шрёдингера. Оно справедливо и в том случае, когда потенциальная энергия зависит от времени: V = V (x, t).

  Частными решениями уравнения (9) являются функции

.     (10)

  Здесь E — энергия частицы, а y(х) удовлетворяет стационарному уравнению Шрёдингера (7); для свободного движения y(х) является волной де Бройля eikx.

  Волновые функции (10) обладают тем важным свойством, что соответствующие распределения вероятностей не зависят от времени, т.к. |y(x, t)|2 = |y(x)|2. Поэтому состояния, описываемые такими волновыми функциями, называемые стационарными; они играют особую роль в приложениях К. м.

  Общее решение временного уравнения Шрёдингера представляет собой суперпозицию стационарных состояний. В этом общем (нестационарном) случае, когда вероятности существенно меняются со временем, энергия E не имеет определённого значения. Так, если

,

то E =  с вероятностью ½C1½2 и E =  с вероятностью ½C2½2. Для энергии и времени существует соотношение неопределенностей:

,     (11)

где DE — дисперсия энергии, а Dt — промежуток времени, в течение которого энергия может быть измерена.

  Трехмерное движение. Момент количества движения. До сих пор рассматривалось (ради простоты) одномерное движение. Обобщение на движение частицы в трех измерениях не содержит принципиально новых элементов. В этом случае волновая функция зависит от трех координат х, у, z (и времени): y = y (х, у, z, t), а волна де Бройля имеет вид

,     (12)

где px, py, pz,— три проекции импульса на оси координат, а . Соответственно имеются при соотношения неопределенностей:

, , ,     (13)

  Временное уравнение Шредингера имеет вид:

.     (14)

  Это уравнение принято записывать в символической форме

,     (14, a)

  где

— дифференциальный оператор, называемый оператором Гамильтона, или гамильтонианом.

  Стационарным решением уравнения (14) является:

,     (15)

где y0 — решение уравнения Шредингера для стационарных состояний:

= Ey0     (16)

или

.       (16,а)

  При трёхмерном движении спектр энергии также может быть непрерывным и дискретным. Возможен и случай, когда несколько разных состояний имеют одинаковую энергию; такие состояния называются вырожденными. В случае непрерывного спектра частица уходит на бесконечно большое расстояние от центра сил. Но, в отличие от одномерного движения (когда были только две возможности — прохождение или отражение), при трёхмерном движении частица может удалиться от центра под произвольным углом к направлению первоначального движения, т. е. рассеяться. Волновая функция частицы теперь является суперпозицией не двух, а бесконечного числа волн де Бройля, распространяющихся по всевозможным направлениям. Рассеянные частицы удобно описывать в сферических координатах, т. е. определять их положение расстоянием от центра (радиусом) r и двумя углами — широтой q и азимутом j. Соответствующая волновая функция на больших расстояниях r от центра сил имеет вид:

.     (17)

  Первый член (пропорциональный волне де Бройля, распространяющейся вдоль оси z) описывает падающие частицы, а второй (пропорциональный «радиальной волне де Бройля») — рассеянные. Функция f (J, j) называется амплитудой рассеяния; она определяет так называемое дифференциальное сечение рассеяния ds, характеризующее вероятность рассеяния под данными углами:

ds = |f (J, j)|2dW,      (18)

где dWэлемент телесного угла, в который происходит рассеяние.

  Дискретный спектр энергии возникает, как и при одномерном движении, когда частица оказывается внутри потенциальной ямы. Энергетические уровни нумеруют квантовыми числами, причём, в отличие от одномерного движения, не одним, а тремя. Наибольшее значение имеет задача о движении в поле центральных сил притяжения. В этом случае также удобно пользоваться сферическими координатами.

  Момент количества движения. Угловая часть движения (вращение) определяется в К. м., как и в классической механике, заданием момента количества движения, который при движении в поле центральных сил сохраняется. Но, в отличие от классической механики, в К. м. момент имеет дискретный спектр, т. е. может принимать только вполне определённые значения. Это можно показать на примере азимутального движения — вращения вокруг заданной оси (примем её за ось z). Волновая функция в этом случае имеет вид «угловой волны де Бройля» eimj, где j — азимут, а число m также связано с моментом Mz, как в плоской волне де Бройля волновое число k с импульсом р, т. е. m = Mz/h. Т. к. углы j и j + 2p описывают одно и то же положение, то и волновая функция при изменении j на 2p должна возвращаться к прежнему значению. Отсюда вытекает, что m может принимать только целочисленные значения: m = 0, ± 1, ± 2,..., т. е. момент может быть равен

Mz= mh = 0, ± h, ± 2h,...     (19)

Перейти на страницу:

Похожие книги

100 знаменитых загадок природы
100 знаменитых загадок природы

Казалось бы, наука достигла такого уровня развития, что может дать ответ на любой вопрос, и все то, что на протяжении веков мучило умы людей, сегодня кажется таким простым и понятным. И все же… Никакие ученые не смогут ответить, откуда и почему возникает феномен полтергейста, как появились странные рисунки в пустыне Наска, почему идут цветные дожди, что заставляет китов выбрасываться на берег, а миллионы леммингов мигрировать за тысячи километров… Можно строить предположения, выдвигать гипотезы, но однозначно ответить, почему это происходит, нельзя.В этой книге рассказывается о ста совершенно удивительных явлениях растительного, животного и подводного мира, о геологических и климатических загадках, о чудесах исцеления и космических катаклизмах, о необычных существах и чудовищах, призраках Северной Америки, тайнах сновидений и Бермудского треугольника, словом, о том, что вызывает изумление и не может быть объяснено с точки зрения науки.Похоже, несмотря на технический прогресс, человечество еще долго будет удивляться, ведь в мире так много непонятного.

Владимир Владимирович Сядро , Оксана Юрьевна Очкурова , Татьяна Васильевна Иовлева

Приключения / Публицистика / Природа и животные / Энциклопедии / Словари и Энциклопедии
100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука