Читаем Большая Советская Энциклопедия (ЛИ) полностью

Ли'ния в генетике, размножающиеся половым путём родственные организмы, которые происходят, как правило, от одного предка или одной пары общих предков и воспроизводят в ряду поколений одни и те же наследственно устойчивые признаки. Характерные для Л. признаки искусственно поддерживаются путём отбора и близкородственного скрещивания. Различают чистые линии — генотипически однородное потомство самоопыляющихся растений, у которых почти все гены находятся в гомозиготном состоянии, и инбредные Л. — потомство перекрёстноопыляющегося растения, полученное путем принудительного самоопыления, или группа животных, полученная при близкородственном разведении (см. Инбридинг). Чем теснее родство родителей, тем выше степень гомозиготности потомства. И в чистых, и в инбредных Л. постоянно возникающие мутации нарушают гомозиготность. Поэтому для сохранения гомозиготности по генам, определяющим основные свойства Л., необходимо вести отбор. В животноводстве различают генеалогическую Л., т. е. группу животных, происходящую от общего предка, и заводскую Л. — однородную, качественно своеобразную, поддерживаемую отбором и подбором с использованием инбридинга группу высокопродуктивных животных, происходящую от выдающегося родоначальника и схожую с ним по конституции и продуктивности (см. Разведение по линиям). Чистые и инбредные Л. служат основой для получения высокопродуктивных гибридов в растениеводстве и животноводстве. В медико-биологических исследованиях важную роль играют Л. лабораторных животных, сохраняющие константность по определённым признакам.

  Лит.: Иогансен В. Л., О наследовании в популяциях и чистых линиях, пер. с нем., М. — Л., 1935; Медведев Н. Н., Практическая генетика, М., 1966.

  Ю. С. Демин, Е. Я. Борисенко.

Линия (геометрич. понятие)

Ли'ния (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

  1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О — центра окружности). Иногда в учебниках дают определение Л. как границы куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

  2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

  x = R cos t, y = R sin t.

  Когда параметр t пробегает отрезок 0 lb t lb 2p, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

  x = j (t), у = (t),

  где j (t), (t) — произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале D числовой оси t. С каждым значением параметра t (из интервала D) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из D, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 — значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.

  Аналогично, в трёхмерном пространстве Л. задаётся параметрически тремя уравнениями вида

  x = j (t), у = (t), z = c (t),

  где j (t), (t), c (t) — произвольные функции, непрерывные на каком-нибудь интервале. В произвольном топологическом пространствеТ (которое, в частности, может быть плоскостью, поверхностью, обычным трёхмерным пространством, функциональным пространством и т. п.) Л. параметрически задают уравнением вида

  P = j (t),

  где j — функция действительного переменного t, непрерывная на каком-либо интервале, значения которой суть точки пространства Т. Считают, что два параметрических представления задают одну и ту же Л., если они определяют один и тот же порядок следования её точек (в смысле, указанном выше).

  В анализе и топологии рассматривают обычно случай, когда область изменения параметра t есть отрезок а lb t lb b. В этом случае условие того, чтобы два параметрических представления

  Р = j (t), a lb t lb b

  P = j1(t1), a1lb t1lb b1,

  изображали одну и ту же Л., заключается в существовании непрерывной и строго возрастающей функции

  t1 =  f(t),

  для которой

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже