Читаем Большая Советская Энциклопедия (МО) полностью

  Молекулярное взаимодействие. Метод М. и а. п. даёт возможность детально изучать акт столкновения между двумя частицами, в отличие от химических и газодинамических методов, в которых из-за множественных столкновений частиц друг с другом наблюдаются лишь усреднённые эффекты.

  В некоторых из этих экспериментов измеряются эффективные сечения упругих и неупругих соударений частиц, движущихся под разными углами и с разными скоростями. В др. экспериментах наблюдаются химические реакции между частицами и изучается угловое и энергетическое распределение продуктов реакции (Лестер, 1971; Дж. Росс, 1966; Р. Дж. Гордон и др., 1971). Типичный эксперимент второго рода показан на рис. 1 . Атомы водорода вылетают из источника в вакуумную камеру, где они сталкиваются с двухатомными молекулами щелочного металла, например К2 . Угловое распределение продуктов реакции измеряется с помощью детекторов с поверхностной ионизацией (горячие нити Pt и W). Т. к. вольфрамовый детектор одинаково чувствителен к частицам K2 и KOH, а платиновый — менее чувствителен к KOH, то, комбинируя оба детектора, можно различать эти молекулы. Иногда М. и а. п. предварительно поляризуют или, наоборот, измеряют появляющуюся поляризацию. В некоторых экспериментах исследуется возбуждение колебательных уровней энергии у продуктов реакции.

  Резонансные эксперименты (метод Раби). Частицы, вылетая из источника в вакуум (13,3 мн/м 2 или 10-7 мм рт. ст. ), пролетают через неоднородное магнитное поле, создаваемое магнитом А (рис. 2 ). Неоднородное поле А искривляет их траектории, что обусловлено взаимодействием их магнитных моментов с неоднородным магнитным полем. Далее частицы пролетают через коллиматор и попадают в область детектора, где происходит компенсация искривления траектории в неоднородном магнитном поле, создаваемом магнитом В . Конфигурация поля В в точности противоположна конфигурации поля А . Для индентификации молекул их ионизируют (электронным ударом) и пропускают через масс-спектрометр , после чего они регистрируются электронным умножителем , соединённым с фазочувствительным детектором. Плавно изменяя частоту n колебаний электромагнитного поля в зазоре магнита С , создающего однородное магнитное поле, измеряют интенсивность пучка, регистрируемого детектором. Если частота n удовлетворяет боровскому условию:

n = (E 2E 1 )/h,     (1)

где h — Планка постоянная , то молекулы под действием электромагнитного поля, возбуждаемого в резонаторе Р, могут переходить из состояния с энергией E 1 в состояние с энергией E 2 и обратно.

  Если по магнитным свойствам состояние E 1 отличается от состояния E 2 , то поле В после перехода молекулы обычно компенсирует отклонение, вызванное полем А , не для всех молекул пучка; часть молекул, испытавшая переход E 1 ® E 2 , движется по траектории, показанной пунктиром (рис. 2 ). При выполнении условия (1) интенсивность, регистрируемая детектором, имеет минимум. График зависимости интенсивности от частоты представляет собой радиочастотный спектр частиц. Зная резонансную частоту из условия (1), можно определить уровни энергии молекул (см. Магнитный резонанс ).

  Метод параэлектрического резонанса аналогичен методу магнитного резонанса за исключением того, что изменения траектории обусловлены взаимодействием электрических моментов молекул с неоднородными электрическими полями, а квантовые переходы между ними вызваны колебаниями электрического поля в резонаторе. Интенсивность пучка может быть увеличена за счёт использования 4-полюсных или 6-полюсных электродов, создающих пространственную фокусировку пучка. Применяется также сочетание обоих методов, например однородное постоянное электрическое поле используют в экспериментах с магнитным резонансом, а однородное магнитное поле в опытах с параэлектрическим резонансом (К. Мак-Адан, Н. Рамзей и др., 1972).

Перейти на страницу:

Похожие книги