Читаем Большая Советская Энциклопедия (МО) полностью

  Эксперименты с магнитным и параэлектрическим резонансами в М. и а. п. дали большое количество информации о строении молекул, атомов и атомных ядер. Этим методом были измерены спины ядер, магнитные и электрические квадрупольные моменты стабильных и радиоактивных ядер. В частности, был обнаружен электрический квадрупольный момент дейтрона, что впервые указало на существование тензорных сил между элементарными частицами. Была измерена с высокой точностью тонкая структура атомных спектров, в результате чего в экспериментах с атомарным водородом был открыт Лэмбовский сдвиг, послуживший источником серии революционных теоретических открытий в квантовой электродинамике . Измерения сверхтонкой структуры спектров дали первые указания на аномальность магнитного момента электрона, которая впоследствии была измерена непосредственно. В экспериментах с М. и а. п. были осуществлены два независимых измерения постоянной тонкой структуры и получено пока единственное доказательство существования у ядер электрических октупольных моментов. Резонансные эксперименты с М. и а. п. позволили измерить вращательные магнитные моменты и электрические дипольные моменты молекул, энергию взаимодействия ядерных магнитных моментов с вращательными магнитными моментами молекул, зависимость электрических и магнитных свойств от ориентации молекул; определить квадрупольные моменты молекул, энергию межъядерных магнитных взаимодействий в молекулах и т. д. Частота колебаний, соответствующая линиям сверхтонкой структуры магнитного резонанса в М. и а. п., является основой для определения секунды в пассивных стандартах частоты (см. Квантовые стандарты частоты , Квантовые часы ).

  Возможность пространственной фокусировки М. и а. п., содержащих частицы в определённых энергетических состояниях при помощи неоднородных электрических или магнитных полей, позволила использовать М. и а. п. для накопления частиц в состояниях с более высокой энергией (т. е. для создания инверсии населённостей ), что необходимо для осуществления мазера . Первый мазер был осуществлен на пучке молекул аммиака (см. Молекулярный генератор ). Мазер на пучке атомов водорода широко использовался как для исследования атома водорода, так и для создания активного квантового стандарта частоты.

  Лит.: Смит К. Ф., Молекулярные пучки, пер. с англ., М., 1959; Рамзей Н., Молекулярные пучки, пер. с англ., М., 1960; Kusch P., Huges V. W., Atomic and molecular beam spectroscopy, в кн.: Handbuch der Physik, Hrsg. von S. Flügge, Bd 37, Tl 1, B., [u. a.], 1959; Zorn J. C., English T. C., Methods of experimental physics, v. 3, N. Y., 1973.

  Н. Ф. Рамзей (США).

Рис. 1. Схема опыта для изучения химических реакций, происходящих при пересечении пучка атомов водорода с пучком двухатомных молекул щелочного металла. K1 , K2 , K3 — коллимирующие щели.

Рис. 2. Схема эксперимента по наблюдению магнитного резонанса в молекулярном пучке. Пролёт частицы через прибор определяется по искривлению её траектории; отклонения увеличены относительно типичных размеров прибора (длина прибора 3 м , максимальное поперечное сечение 0,01 см ). Р — резонатор, в котором возбуждается электромагнитное поле резонансной частоты; H1 — форвакуумный насос, H2 — высоковакуумный насос; А, В и С — электромагниты.

Молекулярные кристаллы

Молекуля'рные криста'ллы, кристаллы, образованные из молекул, связанных друг с другом слабыми ван-дер-ваальсовыми силами (см. Межмолекулярное взаимодействие ) или водородной связью . Внутри молекул между атомами действует более прочная ковалентная связь . Фазовые превращения М. к. — плавление, возгонка, полиморфные переходы (см. Полиморфизм ) происходят, как правило, без разрушения отдельных молекул.

  Большинство М. к. — кристаллы органических соединений, типичный М. к. — нафталин . М. к. образуют также некоторые простые вещества (H2 , галогены , N2 , O2 , S8 ), бинарные соединения типа H2 O, CO2 , N2 O4 , металлоорганические соединения и некоторые комплексные соединения . К М. к. относятся и кристаллы полимеров , а также кристаллы белков , нуклеиновых кислот . Особым случаем М. к. являются кристаллы отвердевших инертных газов, в которых ван-дер-ваальсовы силы связывают между собой не молекулы, а атомы.

  Для типичных М. к. характерны низкие температуры плавления, большие коэффициенты теплового расширения, высокая сжимаемость, малая твёрдость. В обычных условиях большинство М. к. — диэлектрики . Некоторые М. к., например органические красители, — полупроводники .

  Лит.: Китайгородский А. И., Молекулярные кристаллы, М., 1971; Бокий Г. Б., Кристаллохимия, М., 1971.

  П. М. Зоркий.

Молекулярные сита

Перейти на страницу:

Похожие книги