Читаем Большая Советская Энциклопедия (МО) полностью

  Электронные уровни энергии (E эл в (2) и на схеме рис. 1 соответствуют равновесным конфигурациям молекулы (в случае двухатомной молекулы характеризуемым равновесным значением r 0 межъядерного расстояния r , см. рис. 1 в ст. Молекула ). Каждому электронному состоянию соответствуют определённая равновесная конфигурация и определённое значение E эл ; наименьшее значение соответствует основному уровню энергии.

  Набор электронных состояний молекулы определяется свойствами её электронной оболочки. В принципе значения E эл можно рассчитать методами квантовой химии , однако данная задача может быть решена только с помощью приближённых методов и для сравнительно простых молекул. Важнейшую информацию об электронных уровнях молекулы (расположение электронных уровней энергии и их характеристики), определяемую её химическим строением, получают, изучая её М. с.

  Весьма важная характеристика заданного электронного уровня энергии — значение квантового числа S, характеризующего абсолютную величину полного спинового момента всех электронов молекулы. Химически устойчивые молекулы имеют, как правило, чётное число электронов, и для них S = 0, 1, 2... (для основного электронного уровня типично значение S = 0, а для возбуждённых — S = 0 и S = 1). Уровни с S = 0 называются синглетными, с S = 1 — триплетными (т. к. взаимодействие в молекуле приводит к их расщеплению на c = 2S + 1 = 3 подуровня; см. Мультиплетность ). Радикалы свободные имеют, как правило, нечётное число электронов, для них S = 1 /2 , 3 /2 , ... и типично как для основного, так и для возбуждённых уровней значение S = 1 /2 (дублетные уровни, расщепляющиеся на c = 2 подуровня).

  Для молекул, равновесная конфигурация которых обладает симметрией, электронные уровни можно дополнительно классифицировать. В случае двухатомных и линейных трёхатомных молекул, имеющих ось симметрии (бесконечного порядка), проходящую через ядра всех атомов (см. рис. 2 , б), электронные уровни характеризуются значениями квантового числа l, определяющего абсолютную величину проекции полного орбитального момента всех электронов на ось молекулы. Уровни с l = 0, 1, 2, ... обозначаются соответственно S, П, D..., а величина c указывается индексом слева вверху (например, 3 S, 2 p, ...). Для молекул, обладающих центром симметрии, например CO2 и C6 H6 (см. рис. 2 , б, в), все электронные уровни делятся на чётные и нечётные, обозначаемые индексами g и u (в зависимости от того, сохраняет ли волновая функция знак при обращении в центре симметрии или меняет его).

  Колебательные уровни энергии (значения Е кол ) можно найти квантованием колебательного движения, которое приближённо считают гармоническим. В простейшем случае двухатомной молекулы (одна колебательная степень свободы, соответствующая изменению межъядерного расстояния r ) её рассматривают как гармонический осциллятор ; его квантование даёт равноотстоящие уровни энергии:

Eкол = h ne (u + 1/2),     (5)

где ne — основная частота гармонических колебаний молекулы, u — колебательное квантовое число, принимающее значения 0, 1, 2, ... На рис. 1 показаны колебательные уровни для двух электронных состояний.

  Для каждого электронного состояния многоатомной молекулы, состоящей из N атомов (N ³ 3) и имеющей f колебательных степеней свободы (f = 3N — 5 и f = 3N — 6 для линейных и нелинейных молекул соответственно), получается f т. н. нормальных колебаний с частотами ni (i = 1, 2, 3, ..., f ) и сложная система колебательных уровней:

Перейти на страницу:

Похожие книги