Читаем Большая Советская Энциклопедия (МО) полностью

где u i = 0, 1, 2, ... — соответствующие колебательные квантовые числа. Набор частот нормальных колебаний в основном электронном состоянии является очень важной характеристикой молекулы, зависящей от её химического строения. В определённом нормальном колебании участвуют все атомы молекулы или часть их; атомы при этом совершают гармонические колебания с одной частотой v i , но с различными амплитудами, определяющими форму колебания. Нормальные колебания разделяют по их форме на валентные (при которых изменяются длины линий связи) и деформационные (при которых изменяются углы между химическими связями — валентные углы). Число различных частот колебаний для молекул низкой симметрии (не имеющих осей симметрии порядка выше 2) равно 2, и все колебания являются невырожденными, а для более симметричных молекул имеются дважды и трижды вырожденные колебания (пары и тройки совпадающих по частоте колебаний). Например, у нелинейной трёхатомной молекулы H2 O (рис. 2 , а) f = 3 и возможны три невырожденных колебания (два валентных и одно деформационное). Более симметричная линейная трёхатомная молекула CO2 (рис. 2 , б) имеет f = 4 — два невырожденных колебания (валентных) и одно дважды вырожденное (деформационное). Для плоской высокосимметричной молекулы C6 H6 (рис. 2 , в) получается f = 30 — десять невырожденных и 10 дважды вырожденных колебаний; из них 14 колебаний происходят в плоскости молекулы (8 валентных и 6 деформационных) и 6 неплоских деформационных колебаний — перпендикулярно этой плоскости. Ещё более симметричная тетраэдрическая молекула CH4 (рис. 2 , г) имеет f = 9 — одно невырожденное колебание (валентное), одно дважды вырожденное (деформационное) и два трижды вырожденных (одно валентное и одно деформационное).

  Вращательные уровни энергии можно найти квантованием вращательного движения молекулы, рассматривая её как твёрдое тело с определёнными моментами инерции . В простейшем случае двухатомной или линейной многоатомной молекулы её энергия вращения

где I — момент инерции молекулы относительно оси, перпендикулярной оси молекулы, а М — вращательный момент количества движения. Согласно правилам квантования,

где вращательное квантовое число J = 0, 1, 2, ..., и, следовательно, для E вращ получили:

где вращательная постоянная  определяет масштаб расстояний между уровнями энергии, уменьшающийся с увеличением масс ядер и межъядерных расстояний. На рис. 1 показаны вращательные уровни для каждого электронно-колебательного состояния.

  Различные типы М. с. возникают при различных типах переходов между уровнями энергии молекул. Согласно (1) и (2)

DE = E ‘ — E ‘’ = DE эл + DE кол + DE вращ , (8)

где изменения DE эл , DE кол и DE вращ электронной, колебательной и вращательной энергий удовлетворяют условию:

DE эл >> DE кол >> DE вращ      (9)

[расстояния между уровнями того же порядка, что и сами энергии E эл , E ол и E вращ , удовлетворяющие условию (4)].

  При DE эл ¹ 0 получаются электронные М. с., наблюдаемые в видимой и в ультрафиолетовой (УФ) областях. Обычно при DE эл ¹ 0 одновременно DE кол ¹ 0 и DE вращ ¹ 0; различным DE кол при заданном DE эл соответствуют различные колебательные полосы (рис. 3 ), а различным DE вращ при заданных DE эл и DE кол — отдельные вращательные линии, на которые распадается данная полоса; получается характерная полосатая структура (рис. 4 ). Совокупность полос с заданным DE эл (соответствующим чисто электронному переходу с частотой v эл = DE эл /h ) называемая системой полос; отдельные полосы обладают различной интенсивностью в зависимости от относительных вероятностей переходов (см. Квантовые переходы ), которые могут быть приближённо рассчитаны квантовомеханическими методами. Для сложных молекул полосы одной системы, соответствующие данному электронному переходу, обычно сливаются в одну широкую сплошную полосу, могут накладываться друг на друга и несколько таких широких полос. Характерные дискретные электронные спектры наблюдаются в замороженных растворах органических соединений (см. Шпольского эффект ). Электронные (точнее, электронно-колебательно-вращательные) спектры изучаются экспериментально при помощи спектрографов и спектрометров со стеклянной (для видимой области) и кварцевой (для УФ-области) оптикой, в которых для разложения света в спектр применяются призмы или дифракционные решётки (см. Спектральные приборы ).

  При DE эл = 0, а DE кол ¹ 0 получаются колебательные М. с., наблюдаемые в близкой (до нескольких мкм ) и в средней (до нескольких десятков мкм ) инфракрасной (ИК) области, обычно в поглощении, а также в комбинационном рассеянии света. Как правило, одновременно DE вращ ¹ 0 и при заданном E кол получается колебательная полоса, распадающаяся на отдельные вращательные линии. Наиболее интенсивны в колебательных М. с. полосы, соответствующие Du = u ’ — u ’’ = 1 (для многоатомных молекул — Du i = u i ’ — u i ’’= 1 при Du k = u k ’ — u k ’’ = 0, где k ¹ i).

Перейти на страницу:

Похожие книги