Распространение интенсивных звуковых волн (называемых также волнами конечной амплитуды) обладает рядом существенных особенностей. Одна из них — изменение формы волны при её распространении — обусловлена разницей в скоростях перемещения различных точек её профиля: точки, соответствующие областям сжатия, «бегут» быстрее точек, соответствующих областям разрежения. Происходит это потому, что скорость звука в области сжатия больше, чем в области разрежения; кроме того, волна увлекается средой, которая в области сжатия движется в направлении распространения волны, а в области разрежения — в противоположном направлении. Для волн малой амплитуды эта разница скоростей пренебрежимо мала, и потому распространение таких волн происходит практически без изменения их формы, в соответствии с решениями линейной акустики, принимающей скорость звука постоянной для всех точек профиля волны. В случае же волн большой интенсивности накапливающийся эффект изменения формы первоначально синусоидальной волны может привести к такому увеличению крутизны отдельных участков её профиля, что на каждом периоде её появятся разрывы и образуется периодическая ударная волна пилообразной формы (
В отличие от волн малой амплитуды, интенсивные звуковые волны не подчиняются
Фотография формы первоначально синусоидальной волны на расстоянии в 100 длин волн от излучателя.
Нелинейная квантовая теория поля
Нелинейная ква'нтовая тео'рия по'ля,
общее название теорий, в которых используются нелинейные уравнения для операторов, описывающих квантованные поля. Физически это соответствует учёту самовоздействия поля. В одних теориях самовоздействие поля постулируется как нечто изначальное (такие теории и называются обычно нелинейными), в других — оно «индуцируется» некоторым промежуточным взаимодействием. В квантовой электродинамике, например, нелинейность, «индуцированная» взаимодействием между фотонами посредством виртуальных электронно-позитронных пар, должна приводить к наблюдаемым (но ещё не обнаруженным ввиду их малости) эффектам рассеяния света на свете и на поле заряженных частиц (см. Вторая тенденция, получившая известность в основном после работ групп В.
Указанные тенденции пока только намечены. Н. к. т. п. ещё не получила достаточного развития, хотя важность учёта нелинейностей в физике элементарных частиц становится всё более очевидной.
Нелинейная оптика