Описанное явление, называется генерацией оптических гармоник, имеет много общего с широко известным умножением частоты в нелинейных элементах радиоустройств. Вместе с тем есть и существенное различие: в оптике эти эффекты являются результатом взаимодействия не колебаний, а волн. В сильном световом поле, согласно (2), каждый атомный осциллятор переизлучает не только на частоте падающей волны, но и на её гармониках. Однако так как свет распространяется в среде, размеры L
которой существенно превышают длину волны l (для видимого света l~ 10-4
см
),
суммарный эффект генерации гармоник на выходе зависит от фазовых соотношений между основной волной и гармониками внутри среды; возникает своеобразная интерференция, способная либо усилить, либо ослабить эффект. Оказалось, что взаимодействие двух волн, различающихся частотами, например w и 2w, максимально, а, следовательно, максимальна и перекачка энергии от основной волны к гармоникам, если их фазовые скорости
равны (условие фазового синхронизма). К условиям фазового синхронизма можно прийти и из квантовых соображений, они соответствуют закону сохранения импульса при слиянии или распаде фотонов. Для трёх волн условия синхронизма: k3
= k1
+ k2
,
где k1
, k2
и k3
—
импульсы фотонов (в единицах Планка постоянной
).
Условия синхронизма основной волны и гармоник в реальной диспергирующей среде на первый взгляд кажутся неосуществимыми. Равенство фазовых скоростей волн на разных частотах имеет место лишь в среде без дисперсии. Однако оказалось, что отсутствие дисперсии можно имитировать, используя взаимодействие волн разной поляризации в анизотропной среде (рис. 1
). Этот метод резко повысил эффективность нелинейных волновых взаимодействий. Если в 1961 кпд оптических удвоителей частоты составлял ~10-10
—10-12
,
то в 1963 он достиг значения 0,2—0,3, а к 1973 приблизился к 0,8. Оптические умножители частоты позволили существенно расширить область применения лазеров. Эффект генерации оптических гармоник широко используется для преобразования излучения длинноволновых лазеров в излучение коротковолновых диапазонов. Промышленность многих стран выпускает оптические умножители частоты на неодимовом стекле или на алюмоиттриевом гранате с примесью неодима (l = 1,06 мкм
),
позволяющие получить мощное когерентное излучение на волнах l = 0,53 мкм
(2-я гармоника), l = 0,35 мкм
(3-я гармоника) и l = 0,26 мкм
(4-я гармоника). Для этой цели были подобраны кристаллы, обладающие высокой нелинейностью (большими значениями c) и позволяющие удовлетворить условиям фазового синхронизма. Иллюстрациями современных возможностей в этой области являются генератор 5-й оптической гармоники (рис. 2
) и получение 9-й гармоники излучения неодимового лазера (l9
= 1189 ). В 1972 было экспериментально осуществлено умножение частоты в области вакуумного ультрафиолета; в качестве нелинейной среды здесь использовались некоторые газы и пары металлов. Самофокусировка света. Самовоздействия.
При достаточно большой (но вполне умеренной для современной лазерной техники) мощности светового пучка, превышающей некоторое критическое значение Ркр
, в среде вместо обычной дифракционной расходимости первоначально параллельного пучка наблюдается его самосжатие (рис. 3
). Величина Ркр
различна для разных сред; для ряда органических жидкостей Ркр
~ 10—50 квт,
в некоторых кристаллах и оптических стеклах Ркр
не превышает нескольких вт.
Иногда, например, при распространении излучения мощных импульсных лазеров в жидкостях, это самосжатие носит характер «схлопывания» пучка, которое сопровождается настолько быстрым нарастанием светового поля, что это может вызвать световой пробой (см. Лазерное излучение
),
фазовые переходы и др. изменения состояния вещества. В др. случаях, например при распространении излучения газовых лазеров
непрерывного действия в стеклах, нарастание поля также заметно, хотя и не является столь быстрым. Самосжатие в некотором смысле похоже на фокусировку пучка обычной линзой. Однако существенные различия наблюдаются за фокальной точкой; самосфокусированный пучок может образовывать квазистационарные нити («волноводное» распространение), последовательность фокальных точек и т.п.