Читаем Большая Советская Энциклопедия (НЕ) полностью

Нейтро'нная спектроскопи'я, нейтронная спектрометрия, область ядерной физики, охватывающая исследования зависимости эффективного поперечного сечения взаимодействия нейтронов с атомными ядрами от энергии нейтронов.

  Характерной особенностью энергетической зависимости сечений о взаимодействия медленных нейтронов с ядрами является наличие так называемых нейтронных резонансов — резкого увеличения (в 10—105 раз) поглощения и рассеяния нейтронов вблизи определённых энергий (рис. 1 ). Избирательное (резонансное) поглощение нейтронов определённых энергий впервые было обнаружено Э. Ферма с сотрудниками в 1934. Ими же было показано, что способность поглощать медленные нейтроны сильно меняется от ядра к ядру.

  Образующееся после захвата нейтрона высоковозбуждённое (резонансное) состояние ядра нестабильно (время жизни ~10-15 сек): ядро распадается с испусканием нейтрона (резонансное рассеяние нейтронов) или g-кванта (радиационный захват). Значительно реже испускаются a-частица или протон. Для некоторых очень тяжёлых ядер (U, Pu и др.) происходит также деление возбуждённого ядра на 2, реже на 3 осколка (см. Ядра атомного деление ).

  Вероятности различных видов распада резонансного состояния ядра характеризуются так называемыми ширинами резонансов (нейтронной Гд , радиационной Гg , делительной Гg , a-шириной Гa и т.д.). Эти ширины входят в качестве параметров в формулу Брейта — Вигнера, которая описывает зависимость эффективного сечения взаимодействия нейтрона с ядром от энергии нейтрона E вблизи резонансной энергии E 0 . Для каждого вида (i ) распада формула Брейта — Вигнера приближённо может быть записана в виде:

  Здесь Г = Гn + Гg + Гa +...— полная ширина нейтронного резонанса, равная ширине резонансного пика на половине высоты, g статистический фактор, зависящий от спина и чётности резонансного состояния ядра.

  Эффективные сечения измеряются с помощью нейтронного спектрометра, основными элементами которого являются источник И моноэнергетических нейтронов с плавно изменяемой энергией и детектор Д нейтронов или вторичного излучения. Полное сечение Г определяется из отношения отсчётов нейтронного детектора Д с мишенью М, расположенной на пути пучка и вне пучка (рис. 2 , а). При измерении парциальных сечений регистрируется вторичное излучение (g-лучи, вторичные нейтроны, осколки деления и т.д.) из мишени, помещенной на пути нейтронов. В области энергии £ 10 эв в качестве нейтронного источника иногда используются кристаллические нейтронные монохроматоры, которые устанавливаются на канале ядерного реактора и выделяют пучки нейтронов с определённой энергией (рис. 2 , б). Поворачивая кристалл, изменяют энергию нейтронов (см. Дифракция частиц ). Для энергии ³ 30 кэв обычно используют ускорители Ван-де-Граафа (см. Электростатический ускоритель ), в которых моноэнергетические нейтроны образуются в результате ядерных реакций типа 7 Li (p, n)7 Be. При изменении энергии протонов изменяется энергия вылетающих нейтронов (энергетический разброс DE ~ 1 кэв ).

  Более распространённым методом в Н. с. является метод времени пролёта, в котором используются нейтронные источники с широким энергетическим спектром, испускающие нейтроны в виде коротких вспышек длительностью t. Специальное электронное устройство, называемое временным анализатором, фиксирует интервал времени t между нейтронной вспышкой и моментом попадания нейтрона в детектор, т. е. время пролёта нейтронами расстояния L от источника до детектора. Энергия нейтронов E в эв связана со временем t в мксек соотношением:

E = (72,3L )2 /t 2 .     (2)

  При измерении парциальных сечений методом времени пролёта детектор располагают непосредственно около мишени.

  Так как вторичная частица испускается практически одновременно с захватом нейтрона, то фиксируется момент захвата нейтрона ядром, а, следовательно, определяется энергия нейтрона по времени t пролёта. Энергетическое разрешение DE нейтронного спектрометра по времени пролёта приближённо можно представить в виде:

  DE /E = 2t/t .     (3)

Перейти на страницу:

Похожие книги