Читаем Большая Советская энциклопедия (Но) полностью

Лит.: Берг Л. С., Номогенез или эволюция на основе закономерностей, П., 1922; Теория номогенеза. Сб. критических ст., М., 1928.

А. В. Яблоков.

Номогрмма

Номогрмма (от греч. nómos — закон и…грамма), чертёж, являющийся особым изображением функциональной зависимости (см. Номография). Основное назначение Н. — служить средством для вычислений. Н. применяется в инженерных расчётах, играя роль специализированных счётных приспособлений.

Номогрфия

Номогрфия (от греч. nómos — закон и …графия), раздел математики, объединяющий теорию и практические методы построения номограмм — специальных чертежей, являющихся изображениями функциональных зависимостей. Особенность номограмм заключается в том, что каждый чертёж изображает заданную область изменения переменных и каждое из значений переменных в этой области изображено на номограмме определённым геометрическим элементом (точкой или линией); изображения значения переменных, связанных функциональной зависимостью, находятся на номограмме в определённом соответствии, общем для номограмм одного и того же типа.

На рис. 1 приведён пример номограммы для вычисления ay — одного из углов установки резца на заточном станке по заданным значениям углов резца a и j Зависимость между этими величинами определяется формулой:

Номограмма состоит из трёх шкал: шкалы углов ay шкалы углов a и шкалы углов j. Точки каждой из шкал являются изображениями значения соответствующего переменного. Номограмма построена так, что три точки, изображающие соответственно значения ay, a и j, связанные данной зависимостью, всегда лежат на одной прямой. Отсюда непосредственно вытекает способ вычисления по номограмме: для вычисления ay надо на шкалах a и j найти точки, соответствующие данным значениям a и j, и через них провести прямую. Эта прямая пройдёт на шкале ay через точку, соответствующую искомому значению ay. На номограмме пунктирная линия соединяет точки шкал a и j со значениями a = 7,5° и j = 4°; номограмма даёт ответ ay= 62°.

Номограммы и их классификация. Номограммы различают по способу изображения переменных и по способу задания соответствия между изображениями переменных.

Изображения переменных. Значения переменных изображают на номограммах или точками, или линиями. Значение переменного, приписанное точке (линии), называется пометкой точки (линии), а сама точка (линия) называется помеченной точкой (линией). Область изменения переменного изображается на номограмме или совокупностью помеченных точек, которая называется шкалой переменного или однопараметрическим семейством помеченных линий. Для нахождения на шкале точек по их пометкам и значений пометок по заданным точкам шкалы градуируются системой штрихов, указывающих на отдельные точки шкалы. У некоторых штрихов надписываются значения пометок точек. Соответствие между точками шкалы, не отмеченными штрихами и их пометками, устанавливается линейной интерполяцией, которая выполняется на номограмме на глаз. В семействе линий проводят также лишь отдельные линии, остальные находят интерполяцией. При изображении значений переменных точками, наряду со шкалами, в номограммах применяют бинарные поля. Бинарное поле является изображением области изменения двух переменных и состоит из точек, каждой из которых поставлена в соответствие пара чисел — приписано две пометки: пометка первого переменного и пометка второго переменного. Точки бинарного поля заполняют двумерную область. В бинарном поле переменных и и v проводят два семейства линий u = const и n = const, которые позволяют по данным пометкам находить точку в поле и по точке поля её пометки (на рис. 3 это — вертикальные прямые h и кривые j). В нужных случаях здесь также применяют линейную интерполяцию.

Классификация номограмм. Наиболее распространены следующие номограммы: из выравненных точек, сетчатые и транспарантные; для уравнения с двумя переменными применяют двойные шкалы.

Двойная шкала является простейшим видом номограммы. Для уравнения F (u, n) = 0 она состоит из совмещенных шкал переменных u и n. Шкалы построены так, что их точки, пометки которых удовлетворяют уравнению, совпадают. На рис. 2 приведён пример двойной шкалы для вычисления логарифмов: u = lg n.

Перейти на страницу:

Все книги серии Большая Советская энциклопедия

Похожие книги

100 великих зарубежных фильмов
100 великих зарубежных фильмов

Днём рождения кино принято считать 28 декабря 1895 года, когда на бульваре Капуцинок в Париже состоялся первый публичный сеанс «движущихся картин», снятых братьями Люмьер. Уже в первые месяцы 1896 года люмьеровские фильмы увидели жители крупнейших городов Западной Европы и России. Кино, это «чудо XX века», оказало огромное и несомненное влияние на культурную жизнь многих стран и народов мира.Самые выдающиеся художественно-игровые фильмы, о которых рассказывает эта книга, представляют всё многообразие зарубежного киноискусства. Среди них каждый из отечественных любителей кино может найти знакомые и полюбившиеся картины. Отдельные произведения кинематографистов США и Франции, Италии и Индии, Мексики и Японии, Германии и Швеции, Польши и Великобритании знают и помнят уже несколько поколений зрителей нашей страны.Достаточно вспомнить хотя бы ленты «Унесённые ветром», «Фанфан-Тюльпан», «Римские каникулы», «Хиросима, любовь моя», «Крёстный отец», «Звёздные войны», «Однажды в Америке», «Титаник»…Ныне такие фильмы по праву именуются культовыми.

Игорь Анатольевич Мусский

Кино / Энциклопедии / Словари и Энциклопедии