где
Примером транспарантной номограммы, транспарант которой имеет лишь поступат. движение, является логарифмическая линейка.
Составные номограммы. Для уравнений со многими переменными применяют составные номограммы, представляющие систему отд. номограмм, связанных общими шкалами или семействами линий. Обычно элементами составных номограмм являются номограммы из выравненных точек и сетчатые номограммы.
Погрешности вычислений по номограммам
. Выполнение вычислений по номограммам сопровождается погрешностями, которые являются следствием невозможности (в процессе вычисления) точного осуществления необходимого соответствия между элементами номограммы.Точность вычисления по номограммам существенно зависит от аккуратности выполнения необходимых операций. При вычислении по номограммам из выравненных точек следует применять прозрачную линейку с продольной визирной чертой.
Возможность представления уравнений номограммами
. Номограммы разделяются на точные и приближённые.Номограмма данной функциональной зависимости называется точной, если обусловленное её типом соответствие между изображениями переменных (в предположении точного осуществления) устанавливает между переменными зависимость, совпадающую с данной.
Условия точного номографирования налагают определённые ограничения на вид уравнений, для которых можно построить номограммы.
Условия, которым должно удовлетворять уравнение, для того чтобы можно было построить его номограмму, называются условиями номографируемости. При построении номограмм номографируемое уравнение преобразуется в одну из т. н. канонических форм, для которых известны в общем виде уравнения шкал, полей, семейств линий соответствующей номограммы.
При построении составных номограмм дополнительно необходимо представление данного уравнения со многими переменными в виде системы уравнений с меньшим числом переменных — т. н. разделение переменных (это достигается введением вспомогательных параметров).
Номограмма данной функциональной зависимости называется приближённой, если обусловленное типом номограммы соответствие между её элементами (в предположении точного его осуществления) устанавливает между переменными зависимость, приближённо представляющую данную. Создан ряд способов построения приближённых номограмм в основном типа из выравненных точек.
На
Погрешность в определении
Приближённые номограммы применяют тогда, когда точные номограммы невозможны или когда точные номограммы имеют неудачную форму и дают б
льшую погрешность в ответе.Историческая справка
. Геометрические изображения зависимостей между переменными, избавляющие от вычислений, известны давно. К ним можно отнести достаточно сложные построения, содержащие семейства линий и шкалы как изображения переменных (встречающиеся, например, в солнечных часах и