Читаем Большая Советская Энциклопедия (ОР) полностью

  Если рассматривать функции с интегрируемым квадратом как элементы гильбертова пространства, то нормированные О. с. ф. будут системами координатных ортов этого пространства, а разложение в ряд по нормированным О. с. ф. — разложением вектора по ортам. При этом подходе многие понятия теории нормированных О. с. ф. приобретают наглядный геометрический смысл. Например, формула (*) означает, что проекция вектора на орт равна скалярному произведению вектора и орта; равенство Ляпунова — Стеклова может быть истолковано как теорема Пифагора для бесконечномерного пространства: квадрат длины вектора равен сумме квадратов его проекций на оси координат; замкнутость О. с. ф. означает, что наименьшее замкнутое подпространство, содержащее все векторы этой системы, совпадает со всем пространством и т.д.

  Лит.: Толстов Г. П., Ряды Фурье, 2 изд., М., 1960; Натансон И. П., Конструктивная теория функций, М. — Л., 1949; его же, Теория функций вещественной переменной, 2 изд., М., 1957; Джексон Д., Ряды Фурье и ортогональные полиномы, пер. с англ., М., 1948; Качмаж С., Штейнгауз Г., Теория ортогональных рядов, пер. с нем., М., 1958.

Ортогональное преобразование

Ортогона'льное преобразова'ние,линейное преобразование евклидова векторного пространства, сохраняющее неизменным длины или (что эквивалентно этому) скалярное произведение векторов. В ортогональном и нормированном базисе О. п. соответствует ортогональная матрица. О. п. образуют группу — т.н. группу вращений данного евклидова пространства вокруг начала координат. В трёхмерном пространстве О. п. сводится к повороту на некоторый угол вокруг некоторой оси, проходящей через начало координат О, если определитель соответствующей ортогональной матрицы равен +1. Если же этот определитель равен —1, то поворот дополняется зеркальным отражением относительно плоскости, проходящей через О и перпендикулярной оси поворота. В двумерном пространстве, т. е. в плоскости, О. п. определяет поворот на некоторый угол вокруг начала координат О или зеркальное отражение относительно некоторой прямой, проходящей через О. Используется О. п. при приведении к главным осям квадратичной формы. См. также Матрица, Векторное пространство.

Ортогональность

Ортогона'льность (греч. orthogonios — прямоугольный, от orth'os — прямой и gon'ia — угол), обобщение (часто синоним) понятия перпендикулярности. Если два вектора в трёхмерном пространстве перпендикулярны, то их скалярное произведение равно нулю. Это позволяет обобщить понятие перпендикулярности, распространив его на векторы в любом линейном пространстве, в котором определено скалярное произведение, обладающее обычными свойствами (см. Гильбертово пространство), назвав два вектора ортогональными, если их скалярное произведение равно нулю. В частности, вводя скалярное произведение в пространстве комплекснозначных функций, заданных на отрезке [а, b ] формулой

,

где r(х) ³ 0, называют две функции f (x) и j(x), для которых (f, j)r = 0, то есть

,

ортогональными с весом r(х). Два линейных подпространства называется ортогональными, если каждый вектор одного из них ортогонален каждому вектору другого. Это понятие обобщает понятие перпендикулярности двух прямых или прямой и плоскости в трёхмерном пространстве (но не понятие перпендикулярности двух плоскостей). Термином ортогональные кривые обозначают кривые линии, пересекающиеся под прямым углом (измеряется угол между касательными в точке пересечения). См., например, ортогональные траектории в ст. Изогональные траектории.

Ортогональные многочлены

Ортогона'льные многочле'ны, специальные системы многочленов {рп (х)}; n = 0, 1, 2,..., ортогональных с весом r(х) на отрезке [а, b ] (см. Ортогональная система функций). Нормированная система О. м. обозначается через , а система О. м., старшие коэффициенты которых равны 1,— через . В краевых задачах математической физики часто встречаются системы О. м., для которых вес r(х) удовлетворяет дифференциальному уравнению (Пирсона)

Многочлен рп (х) такой системы удовлетворяет дифференциальному уравнению

где gn=n [(a1 + (n + 1)b2].

  Наиболее важные системы О. м. (классические) относятся к этому типу; они получаются (с точностью до постоянного множителя) при указанных ниже а, b и r(х).

Перейти на страницу:

Похожие книги

Урбанистика. часть 1
Урбанистика. часть 1

Город, существующий тысячи лет, создавали и осмысляли, всегда осмысляли и всегда переделывали заново. Но особенную напряженность этот процесс приобрел в последние полтораста лет, когда города начали распухать на дрожжах индустриализации. В этом году впервые в истории человечества численность городского населения в мире уже сравнялась с численностью сельских жителей. В европейских странах, включая Россию, доля городского населения превышает три четверти и продолжает расти. Растет и исход населения из городов, где условия жизни становятся все труднее, в пригороды, где, однако, эти условия тоже стремительно осложняются. Автор книги предпринял попытку в сжатом виде изложить опыт удач и опыт провалов в различных подходах к стратегии развития городов, накопленный за полтора века.Книга, свободная от академической усложненности, адресована всем, кто хочет узнать, что происходило и происходит с городами, в которых мы живем, и чего можно ожидать от ближайшего будущего в организации городской жизни.

Вячеслав Глазычев , Вячеслав Леонидович Глазычев

Энциклопедии / Словари и Энциклопедии