Реджевские траектории — основа динамической систематики частиц
Амплитуда рассеяния частицы выражается через парциальные амплитуды fl (E), отвечающие различным орбитальным моментам l столкновения. По самому квантомеханическому смыслу величины l могут принимать лишь целые положительные значения. Однако для случая рассеяния частицы на каком-либо сферически симметричном потенциале парциальные амплитуды можно формально продолжить в область комплексных значений l. При этом можно показать, что парциальная амплитуда является аналитической функцией l в правой полуплоскости комплексного переменного l (точнее, при Rel > - 1/2). Метод аналитического продолжения по l ввёл итальянский физик Т. Редже. Он показал, что для короткодействующих потенциалов (в том числе для потенциала Юкавы и суперпозиции таких потенциалов) особенностями парциальной амплитуды правее линии Rel = - 1/2 могут являться только полюсы li = li (E), положение которых в комплексной плоскости зависит от энергии. Эти полюсы, называются полюсами Редже, имеют простой физический смысл. Стабильные связанные состояния и резонансы непосредственно получаются из полюсов Редже. Если при некоторых значениях энергии Е = En ниже порога (т. е. при Е < 0 для рассеяния частицы на внешнем поле, обращающемся в 0 на ¥, или при Е < ma + mb для процессов столкновения частиц «а» и «b») величина li (En) равна целому положительному числу l, то это означает, что система имеет стабильные связанные состояния с орбитальным моментом l. Если при значениях энергии Е = Er (выше порога) Re li (Er) равна целому положительному числу, то это означает, что система имеет резонансы. Функция li (E) называется реджевской траекторией. Заметим, что выше порога реакции она является комплексной. Учёт обменного взаимодействия приводит к тому, что для связанных состояний и резонансов с чётными орбитальными моментами будет одна траектория Редже, а для нечётных — другая. Приведём пример траектории Редже для рассеяния электрона в кулоновском поле ядра водородоподобного атома. Уровни энергии в этом случае определяются формулой Бора:
(n
— главное квантовое число, Z — атомный номер; см. Атом), что даёт зависимость: ,
в которой целым положительным значениям l
отвечают определённые уровни энергии системы En. Для значений Е
> 0 (выше порога) l (E) равна
(где k
— волновое число, связанное с энергией соотношением . Т. к. Rel (E) для Е > 0 не равна целому положительному числу, это означает, что система не имеет резонансных состояний. Траектории Редже явились основой систематики ядерно-стабильных частиц и резонансов. В отличие от систематики, основанной на симметрии частиц, эта систематика опирается на динамику взаимодействия. При помощи реджевской траектории a. (Е
) можно систематизировать частицы с одинаковыми внутренними характеристиками и отличающимися на чётное число значениями спина. Группы частиц, объединённые в супермультиплеты, должны, следовательно, повторяться с различными значениями спинов (отличающимися на чётное число). Т. е. наряду с октетом барионов со спином 1/2 должны существовать октеты барионов со спином 5/2, 9/2 и т. д. Т. о., получается некоторый аналог периодической системы Менделеева и реджевские траектории, объединяющие частицы с одинаковыми внутренними характеристиками, аналогичны её столбцам. Как показывает опыт, реджевские траектории для частиц являются приближённо линейными функциями от квадрата их масс (рис. 5
). Траектория, на которой лежат резонансы с квантовыми числами (кроме l) вакуума (I = J = 0, чётность Р = + 1), играет важную роль для феноменологического описания процессов рассеяния, определяя полное сечение при очень высоких энергиях (она называются вакуумной траекторией, или траекторией Померанчука). Процессы, в которых происходит передача заряда, странности и др. квантовых чисел (например, p- + р ® pq + n), при феноменологическом анализе описываются траекториями Редже с соответствующими квантовыми числами («реджеонами»). В релятивистской теории наряду с полюсами Редже появляются и точки ветвления. Однако структура особенностей в комплексной l
-плоскости до конца ещё не выяснена. На основе предположений о характере особенностей парциальных амплитуд построены различные реджеонные модели для описания процессов рассеяния и множеств. рождения при высоких энергиях.
Для изучения процессов С. в. успешно используются также мультипериферическая модель и описание реакций с помощью квазипотенциалов, учитывающих поглощение частиц.