Читаем Большая Советская Энциклопедия (ВА) полностью

  б) при t = to и t = T она должна принимать значения

  х (to ) = х0 , х (Т) = хт .     (2)

  Обе задачи, рассмотренные в начале статьи, являются частными случаями простейшей задачи В. и.

  Первые вариационные задачи были задачами механики. Они были поставлены в 18 в. и, следуя традициям того времени, первый вопрос, на который надо было ответить, был вопрос о способе фактического отыскания функции x (t ), реализующей минимум функционала (1).

  Эйлер создал численный метод решения задач В. и., который получил название Эйлера метода ломаных . Этот метод был первым среди большого класса, так называемых, прямых методов ; все они основаны на редукции задачи отыскания экстремума функционала к задаче отыскания экстремума функции многих переменных. Поскольку для получения решения с высокой точностью задачу приходится сводить к отысканию экстремума функции с большим числом переменных, она становится весьма сложной для ручного счёта. Поэтому долгое время прямые методы были вне основного русла, по которому направлялись усилия математиков, занимавшихся В. и.

  В 20 в. интерес к прямым методам значительно усилился. Прежде всего были предложены новые способы редукции к задаче об экстремуме функции конечного числа переменных. Поясним эти идеи на простом примере. Рассмотрим снова задачу отыскания минимума функционала (1) при дополнит. условии

  x (to ) = x (T) = 0      (3)

  и будем разыскивать решение задачи в форме

 

  где jn (t) — некоторая система функций, удовлетворяющих условиям типа (3). Тогда функционал J (x) становится функцией коэффициентов ai :

  J = J (ai ,..., aN ),

  и задача сводится к отысканию минимума этой функции N переменных. При известных условиях, наложенных на систему функций {jn } , решение этой задачи стремится при N ® ¥ к решению задачи (1) (см. Ритца и Галёркина методы ).

  Другая причина усиления интереса к прямым методам — это систематическое изучение конечноразностных методов в задачах математической физики, начавшееся с 20-х гг. 20 в. Применение ЭВМ превращает постепенно прямые методы в основной инструмент решения вариационных задач.

  Метод вариаций. Второе направление исследований — это изучение необходимых и достаточных условий, которым должна удовлетворять функция x (t ), реализующая экстремум функционала J (x). Его возникновение также связано с именем Эйлера. Предположим, что тем или иным способом построена функция x (t ). Как проверить, является ли эта функция решением задачи? Первый вариант ответа на этот вопрос был дан Эйлером в 1744. В приведённой ниже формулировке этого ответа употребляется введённое в 60-х гг. 18 в. Ж. Лагранжем понятие вариации (отсюда название — В. и.), являющееся обобщением понятия дифференциала на случай функционалов.

  Пусть x (t ) функция, удовлетворяющая условию (2), a h (t) — произвольная гладкая функция, удовлетворяющая условию h (to ) = h (T) = 0. Тогда величина

  J (x + eh) = J*(e),

  где e — произвольное действительное число будет функцией e . Вариацией dJ функционала J называют производную

  (dJ*/de)e = 0.

  Для простейшей задачи В. и.

 

  Разлагая полученное выражение в ряд по степеням e, получим

 

  где о (e) — члены более высокого порядка. Так как h (to ) = h (T ) = 0, то, проведя интегрирование по частям во втором интеграле, найдём

 

  Пусть теперь x (t ) реализует экстремум. Тогда функция J*(e) имеет экстремум при e = 0. Поэтому величина dJ должна обратиться в нуль. Отсюда следует: для того чтобы функция x (t ) доставляла экстремум функционалу (1), необходимо, чтобы она удовлетворяла уравнению

 

  называемому уравнением Эйлера.

  Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.

  Уже во 2-й половине 18 в. круг задач, изучаемых В. и., значительно расширился. Прежде всего основные результаты, относящиеся к простейшей задаче В. и., были перенесены на общий случай интегральных функционалов вида

 

  где x (t ) вектор-функция произвольной размерности, и на функционалы ещё более общего вида.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже