Читаем Большое космическое путешествие полностью

Общая энергия, излучаемая в секунду на единицу площади = σT4, где σ = 2π5k4/(15c2h3) = 5,67 × 10–8 ватт на квадратный метр, причем T – это температура в кельвинах. Перед нами закон Стефана – Больцмана. Йозеф Стефан и Людвиг Больцман были двумя титанами физики XIX века. К сожалению, Больцман свел счеты с жизнью, когда ему было 62 года. Но сохранился этот закон. Если интегрировать функцию Планка, то получится значение постоянной (греческая буква «сигма»). Это колоссально. Как Стефану и Больцману удалось сформулировать этот закон, если Планк еще не вывел свою формулу? Стефан открыл закон экспериментально, а Больцман сформулировал, исходя из соображений о термодинамике.

Если общая энергия, излучаемая в секунду на единицу площади равна σT4, то, если удвоить температуру, поток излучаемой энергии возрастет с коэффициентом 24 = 16.Утроим температуру, и что получится? 34 = 81.Учетверим – и получится 44 = 256.Эта тенденция прослеживается на рис. 5.1, где видно, насколько увеличиваются кривые при возрастании температуры.

Вот как можно запомнить принцип работы этой формулы. Допустим, мы взяли какое-то количество теплового излучения и положили его в коробочку. Теперь будем медленно сжимать коробочку, пока она не станет вдвое меньше. Количество фотонов в коробочке останется тем же, но объем коробочки уменьшится в 8 раз и, соответственно, количество фотонов на кубический сантиметр возрастет в 8 раз. Но при сжатии коробочки длина волны каждого фотона также укорачивается вдвое. В результате тепловое излучение коробочки становится вдвое жарче, так как пиковое значение длины волны уменьшилось вдвое. Удваивается энергия каждого фотона и, соответственно, энергия коробочки. Увеличение энергии каждого фотона происходит за счет той энергии, что затрачивается на сжатие коробочки, эта энергия противодействует давлению излучения, что внутри коробочки. Таким образом, плотность энергии в коробочке будет в 8 × 2 = 16 раз выше, чем ранее, а 16 = 24. Следовательно, энергетическая плотность теплового излучения пропорциональна температуре в четвертой степени, или T4.

Давайте определимся еще с некоторыми терминами. Светимость – это общая энергия, излучаемая звездой в единицу времени. Светимость измеряется в ваттах, точно как у лампочки накаливания. Светимость 100-ваттной лампочки равна 100 ватт. Светимость Солнца равна 3,8 × 1026 ватт. Мощная такая лампочка.

Теперь предложу задачку. Допустим, Солнце обладает такой же светимостью, что и другая звезда, чья поверхностная температура – 2000 К. Какова температура Солнца? В данном примере давайте округлим ее до 6000 К. Температура другой звезды всего 2000 К, то есть она гораздо прохладнее и не может излучать столько же энергии на единицу площади в единицу времени, сколько Солнце, но я заявляю, что светимость у этой звезды точно как у Солнца. Как такое может быть? Беру вторую звезду, вырезаю с нее лоскут площадью 1 см2, с температурой 2000 К, затем вырезаю с Солнца такой же лоскут площадью 1 см2, с температурой 6000 К – втрое жарче. Сколько энергии в единицу времени будет излучать такой лоскут на Солнце по сравнению с лоскутом такой же площади на звезде с температурой 2000 К? В 81 раз больше энергии. Каким же образом вторая звезда может излучать в секунду такую же суммарную энергию, как и Солнце? Если у этих звезд одинаковая светимость, то они должны отличаться чем-то еще, кроме температуры. Дело в том, что вторая звезда, сравнительно холодная, должна иметь гораздо более обширную поверхностную площадь, с которой льется излучение. Фактически ее поверхностная площадь должна быть в 81 раз больше, чем у Солнца. Это должен быть красный гигант, который за счет огромной поверхностной площади восполняет дефицит температуры. Теперь вернемся к нашим уравнениям. Чему равна площадь поверхности сферы? Она равна 4πr2, где r – радиус сферы. Возможно, вы изучали это уравнение в средней школе. Дальше начинается самое интересное. Если светимость – это энергия, излучаемая в единицу времени, а энергия, излучаемая в единицу времени на единицу площади, равна σT4, то мы получили уравнение, позволяющее вычислить светимость Солнца:


LСолн = σTСолн4 × (4πrСолн2).


Можно составить схожее уравнение и для другой звезды. Обозначим ее светимость звездочкой, L*. В таком случае уравнение для вычисления светимости этой звезды – L* = σT*4 × (4πr*2). Теперь у меня есть уравнения для обеих. Более того, я постулировал, что LСолн равна L*. Я привел именно такой пример, чтобы подчеркнуть, что мне даже не требуется знать поверхностную площадь Солнца – в данной задаче речь идет лишь о соотношениях величин. Можно удивительно много узнать о Вселенной, просто присмотревшись к соотношениям.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука