В такой модели рассматриваются лишь дискретные моменты времени (мы можем обозначить их просто 0, 1, 2, 3, 4, ...), каждому из которых соответствует некоторое состояние Вселенной, описываемое некоторым набором так называемых полиомино
. Вы, естественно, вправе спросить меня, что означает этот новый термин? Полиомино представляет собой просто некий набор квадратиков, способных заполнять плоскость, объединяясь друг с другом (рис. 3.10). Меня сейчас интересуют наборы таких полиомино. Состояние вселенной в предлагаемой игрушечной модели задается только двумя реальными и конечными наборами полиомино. На рис. 3.10 приведены все возможные конечные множества полиомино, перечисленные в соответствии с некоторой вычислительной процедурой S0, S1, S2, ... Как выглядит динамика или эволюция этой забавной игрушечной вселенной? Ее развитие начинается в некоторый начальный момент времени с набора полиомино (S0, S0), а затем продолжается в виде все новых пар множеств полиомино, отбираемых по некоторому заданному правилу. В соответствии с правилом отбора учитываются только такие наборы плиток полиомино, которые позволяют заполнить плоскость целиком. Отбор, следовательно, сводится лишь к решению следующей задачи: можно ли заполнить плоскость плитками заданного набора таким образом, чтобы на плоскости не было «зазоров» или «накладок»? Предположим далее, что в некоторый момент времени наша игрушечная вселенная свелась к двум конкретным наборам полиомино (Sq, Sr), определяющим всю дальнейшую эволюцию данной модели. Если вы можете покрыть всю плоскость набором полиомино Sq, то вы переходите к следующему полиомино (Sq+1, т.е. получаете для следующего момента времени пару множеств (Sq+1, Sr). Если же вам это не удается, вы должны поменять наборы местами, что дает вам новую пару (Sr, Sq+1). Чем нам может быть интересна эта очень простая и даже несколько примитивная модель? Суть рассматриваемой модели в том, что хотя ее эволюция носит совершенно детерминистический характер (ведь выше я задал абсолютно ясную и полностью определенную процедуру развития), она не является вычислимой. Дело в том, что Робертом Бергером была доказана теорема, в соответствии с которой не существуют компьютерные операции, позволяющие моделировать развитие этой вселенной, поскольку можно строго показать, что не существуют алгоритмы, позволяющие решить задачу о заполнении плоскости набором полиомино.
Рис. 3.10. Невычисляемая, но детерминистическая игрушечная модель вселенной, различные состояния которой задаются парой конечных наборов полиомино.
Если первый заполняет плоскость целиком, то временная эволюция осуществляется следующим образом: численный номер первого набора возрастает на единицу, а второй набор используется для «обозначения времени». Если же первый набор не покрывает плоскость целиком, наборы следует поменять местами и продолжить операцию. Эволюция системы, описываемая парой таких наборов полиомино, должна выглядеть следующим образом:
(S0
, S0), (S0, S1), (S1, S1), (S2, S1), (S3, S1), (S4, S1), ..., (S278, S251), (S251, S279), (S252, S279), ...
Рассмотренная модель наглядно демонстрирует различие между вычислимостью и детерминизмом. На рис. 3.11 приведены некоторые примеры заполнения плоскости плитками полиомино различных размеров и форм. Легко видеть, что в случаях а
и б полное заполнение плоскости осуществляется без труда. В случае в два типа плиток по отдельности не могут заполнить плоскость целиком (на рисунке указаны неизбежно возникающие «зазоры», или «дырки», в покрытии, однако вместе они легко заполняют плоскость). В случае г плоскость можно заполнить плитками одного типа, однако это достигается только за счет достаточно сложной «подгонки».
Рис. 3.11.
Покрытие бесконечной евклидовой плоскости различными наборами плиток полиомино (разрешено также использование зеркальных «отражений» этих плиток). Ни один из двух типов плиток набора в не может заполнить плоскость целиком.