Очевидно, это было все же слишком смелое обобщение. Конечно, Кетле открыл, что биологические характеристики, и физические, и психологические, распределяются по нормальной кривой частот, и это было необычайно важное открытие, однако нельзя ни считать его доказательством намерений матери-природы, ни рассматривать отдельные вариации просто как ошибки. Скажем, Кетле обнаружил, что средний рост французских призывников составляет пять футов четыре дюйма. Однако на левом конце кривой он обнаружил человека ростом в один фут пять дюймов. Очевидно, нельзя списывать это на ошибку в четыре фута, допущенную при измерении роста в пять футов четыре дюйма.
Даже если пренебречь идеей «законов», которые определяют создание людей по одному шаблону, уже одно то, что распределение самых разных свойств – от веса до IQ – следует одной и той же нормальной кривой, само по себе примечательно. Но этого мало – даже распределение среднего уровня успешных подач в высшей бейсбольной лиге и то более или менее нормально, равно как и доходность фондовых индексов (которые составляются из множества отдельных фондов). Более того, если распределение отклоняется от нормальной кривой, его, как правило, надо основательно проверить. Например, если распределение оценок по английскому языку в какой-то школе отличается от нормального, это наводит на мысль о проверке принятых там правил выставления оценок. Однако это не означает, что все распределения нормальны. Распределение длин слов, которые Шекспир употреблял в своих пьесах, не нормально. Слов из трех-четырех букв у него гораздо больше, чем слов из одиннадцати-двенадцати букв. Среднегодовой доход на семью в США тоже распределяется не в соответствии с нормальной кривой. Например, в 2006 году самые богатые 6,37 % домохозяйств получали примерно треть всего дохода. Это наталкивает на интересный вопрос: если и физические, и интеллектуальные качества людей (определяющие, надо думать, потенциальные способности получать доход) подчиняются нормальному распределению, почему с доходом все иначе? Ответы на подобные социально-экономические вопросы, к сожалению, выходят за рамки этой книги. С нашей нынешней – несколько ограниченной – точки зрения удивляться следует уже тому, что, похоже, все физически измеримые особенности людей, растений и животных (той или иной разновидности) распределяются по одной-единственной математической функции.
Исторически человеческие характеристики служили основой не только для изучения статистических частотных распределений, но и для формулировки математического понятия
Понятие корреляции особенно полезно в ситуациях, когда между двумя переменными нет точной функциональной взаимозависимости. Например, представим себе, что одна переменная – максимальная дневная температура на юге Аризоны, а другая – количество лесных пожаров в том регионе. Невозможно предсказать, какое количество лесных пожаров возникает при данной температуре, поскольку количество пожаров зависит и от других переменных, в частности, от влажности воздуха и от количества костров, которые разжигают люди. Иначе говоря, любому значению температуры соответствует разное количество лесных пожаров и наоборот. И все же математическое понятие
Коэффициент корреляции ввел в арсенал математиков викторианский географ, метеоролог, антрополог и статистик сэр Фрэнсис Гальтон (1822–1911)[88]
. Гальтон – кстати, двоюродный брат Чарльза Дарвина – не был профессиональным математиком. Он был человек сугубо практического склада и обычно предоставлял другим математикам доводить свои новаторские понятия до совершенства; особенно ему помогал в этом статистик Карл Пирсон (1857–1936). Вот как Гальтон объяснял понятие корреляции.