Читаем Был ли Бог математиком? полностью

Логические аксиомы Фреге имеют общий вид «для всех… если… то». Например, одна из аксиом выглядит так: «для всех p, если не (не-р), то р»[126]. В целом эта аксиома гласит, что если утверждение, противоречащее рассматриваемому, ложно, то само утверждение истинно. Например, если утверждение, что вам не надо останавливать машину на красный сигнал светофора, ложно, то вам совершенно точно надо останавливать машину на красный сигнал светофора. Чтобы в полной мере развить логический «язык», Фреге дополнил набор аксиом очень важным новым инструментом. Он заменил традиционный «субъектно-предикатный» стиль классической логики понятиями, позаимствованными у математической теории функций. Позволю себе краткое объяснение. Когда математическое выражение записывают как f (x) = 3x + 1, это означает, что f – это функция переменной x, а значение этой функции можно получить, умножив значение переменной на 3 и прибавив к результату 1. Фреге определил свои так называемые концепты как функции. Например, предположим, что вы хотите обсудить концепт «ест мясо». Этот концепт будет символически описан функцией F (x), и значение этой функции будет «истина», если x – лев, и «ложь», если x – олень. Если речь идет о числах, то концепт (функция) «меньше 7» пометит все числа, равные и больше 7, как «ложь», а все числа меньше 7 – как «истину». Фреге называл объекты, для которых тот или иной концепт принимал значение «истина», «подпадающими под» этот концепт.

Как я уже отметил, Фреге был убежден, что любое утверждение, имеющее отношение к натуральным числам, можно познать и вывести исключительно на основе логических определений и законов. Подобным же образом он начал свое описание темы натуральных чисел, не требуя никакого априорного понимания идеи «числа». Например, на логическом языке Фреге два концепта равномощны (то есть с ними ассоциируется одно и то же число), если есть взаимно однозначное соответствие между объектами, «подпадающими под» один концепт, и объектами, «подпадающими под» другой. То есть крышки от мусорных баков равномощны самим мусорным бакам (если у каждого бака есть крышка), и это определение не требует никакого упоминания о числах. Затем Фреге предлагает интереснейшее логическое определение числа 0. Представьте себе концепт F, который по определению «не тождествен самому себе». Поскольку любой объект должен быть тождествен самому себе, то под концепт F не подпадают никакие объекты. Иначе говоря, F (x) – ложь для любого объекта x. Привычное всем нам число нуль Фреге определил как «мощность концепта F». Затем он определил все натуральные числа в терминах сущностей, которые назвал объемами (Frege 1884). Объем концепта – это класс всех объектов, подпадающих под этот концепт. Человеку, далекому от логики как науки, переварить такое определение, пожалуй, сложновато, но на самом деле все очень просто. Например, объем концепта «женщина» – это класс всех женщин. Обратите внимание, что объем класса «женщина» сам по себе не женщина.

Вероятно, вам интересно, как это абстрактное логическое определение помогает определить, скажем, число 4. По Фреге, число 4 – это объем (или класс) всех концептов, под которые подпадают четыре объекта. Так что к этому классу, а следовательно, к числу 4, принадлежит и концепт «быть лапкой песика по имени Снупи», и концепт «прабабушка Готлоба Фреге».

Программа Фреге произвела настоящую сенсацию, однако были у нее и серьезные недостатки. С одной стороны, идея применять концепты – самую суть мышления – к построению арифметики была просто гениальной. С другой – Фреге не разглядел в собственной системе понятий весьма существенные противоречия. В частности, доказано, что одна из его аксиом, так называемый «Основной закон V», ведет к противоречию и поэтому безнадежно ошибочна. Сам по себе закон довольно невинен: он гласит, что объем концепта F идентичен объему концепта G тогда и только тогда, когда под концепты F и G подпадают одни и те же объекты. Однако 16 июня 1902 года разорвалась бомба: Бертран Рассел (рис. 49) написал Фреге письмо, где привел некий парадокс, доказывавший, что Основной закон V приводит к противоречию. Судьба распорядилась так, что письмо Рассела пришло как раз тогда, когда второй том «Основных законов арифметики» готовился к печати. Потрясенный Фреге поспешил сделать к рукописи откровенное примечание: «Едва ли для ученого что-то может быть неприятнее, чем обнаружить, что самые основы его рассуждений рухнули, когда работа уже завершена. Именно в такое положение поставило меня письмо мистера Бертрана Рассела, когда книга была уже практически в печати». Самому же Расселу Фреге, как человек благородный, написал: «Открытое Вами противоречие стало для меня величайшей неожиданностью – и вынужден признаться, что я даже испугался, поскольку оно сотрясло самые основы, на которых я намеревался выстроить арифметику».

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История работорговли. Странствия невольничьих кораблей в Антлантике
История работорговли. Странствия невольничьих кораблей в Антлантике

Джордж Фрэнсис Доу, историк и собиратель древностей, автор многих книг о прошлом Америки, уверен, что в морской летописи не было более черных страниц, чем те, которые рассказывают о странствиях невольничьих кораблей. Все морские суда с трюмами, набитыми чернокожими рабами, захваченными во время племенных войн или похищенными в мирное время, направлялись от побережья Гвинейского залива в Вест-Индию, в американские колонии, ставшие Соединенными Штатами, где несчастных продавали или обменивали на самые разные товары. В книге собраны воспоминания судовых врачей, капитанов и пассажиров, а также письменные отчеты для парламентских комиссий по расследованию работорговли, дано описание ее коммерческой структуры.

Джордж Фрэнсис Доу

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Революция. От битвы на реке Бойн до Ватерлоо
Революция. От битвы на реке Бойн до Ватерлоо

История Англии – это непрерывное движение и череда постоянных изменений. Но всю историю Англии начиная с первобытности пронизывает преемственность, так что главное в ней – не изменения, а постоянство. До сих пор в Англии чувствуется неразрывная связь с прошлым, с традициями и обычаями. До сих пор эта страна сопротивляется изменениям в любом аспекте жизни. Питер Акройд показывает истоки вековой неизменности Англии, ее консерватизма и приверженности прошлому.Период между Славной революцией (1688) и победой армии союзников при Ватерлоо (1815) вобрал в себя множество событий. Поражение Якова II и правление Вильгельма III Оранского, война за испанское наследство, начавшаяся со вступления на английский престол королевы Анны, присоединение Шотландии к Англии и, следовательно, образование Великобритании в 1707 году, правление Георга I (правнука Якова I), якобитское восстание 1715 года, война четверного союза 1718–1720 годов, правление Георга II, война за австрийское наследство и семилетняя война, правление Георга III с такими важными вехами, как присоединение Ирландии и война с Наполеоном… Именно на этом отрезке времени парламент стал суверенным органом с обязанностями, намного превосходящими монаршие, были основаны Банк Англии и Лондонская фондовая биржа, а беспрецедентные технологические инновации превратили Англию из сельскохозяйственной страны в страну стали и угля. Значительные преобразования произошли и в культурной жизни – появились газеты и родился жанр английского романа. 37 иллюстраций на цветной вклейке сопровождают детальный портрет эпохи, созданный выдающимся мастером исторического повествования Питером Акройдом.В формате PDF A4 сохранён издательский дизайн.

Питер Акройд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература