Читаем Человеческое познание его сферы и границы полностью

Правда, там, где в деле участвуют эмпирические данные, они все даются во временном порядке и, следовательно, в виде последовательности. Если мы избираем предположение о возможности бесконечного числа событий исследуемого нами вида, тогда мы можем также заключить, что наше определение вероятности является применимым только до тех пор, пока события располагаются во временной последовательности. Но вне чистой математики ни одна последовательность нам неизвестна как бесконечная, а большинство, насколько мы можем судить, является конечными. Каков шанс, что человек шестидесятилетнего возраста умрет от рака? Конечно, мы можем определить этот шанс и без допущения, что число людей, которые до конца мира умрут от рака, бесконечно. Но, согласно букве определения Рейхенбаха, определить это было бы невозможно.

Если вероятности зависят от того, что события берутся в их временном, а не в каком-либо другом порядке, в каком их можно расположить, то вероятность не может быть ветвью логики, а должна быть частью изучения природы. Взгляд Рейхенбаха не таков; он считает, напротив, что всякая истинная логика есть логика вероятности и что классическая логика ошибочна, потому что она делит предложения по признаку их истинности или ложности, а не по признаку обладания той или иной степенью вероятности. Он должен был бы поэтому сформулировать основные положения теории вероятности в абстрактных логических терминах, не вводя в них такие случайные признаки действительного мира, как время.

Имеется очень большая трудность в соединении статистического взгляда на вероятность со взглядом, которого также придерживается Рейхенбах и который состоит в том, что все предложения обладают только различными степенями вероятности, не достигающими достоверности. Трудность заключается в том, что тем самым мы, по-видимому, осуждены на бесконечный регресс. Допустим, что мы говорим о вероятности того, что человек, заболевший чумой, умрет от нее. Это значит, что если бы мы могли составить полную последовательность людей, которые с древнейших времен и до исчезновения человеческой расы болели и будут болеть чумой, то мы установили бы, что больше половины из них умерли и умрут от нее. Поскольку в отношении будущего и значительной части прошедшего регистрации нет, постольку мы считаем, что зарегистрированные случаи служат хорошим образчиком. Но теперь мы должны вспомнить, что все наше знание только вероятно; следовательно, если, собрав наши статистические данные, мы найдем, что А болел чумой и умер от нее, то мы должны рассматривать этот случай не как достоверный, а только как вероятный. Чтобы узнать, насколько он вероятен, мы должны включить его в последовательность, скажем, официальную регистрацию смертей, и должны найти какой-либо способ удостовериться, какое отношение регистрации смертей является правильным. При этом какой-нибудь отдельный пункт в нашей статистике окажется, например, следующим: «Было официально удостоверено, что мистер Браун умер, но потом оказалось, что он все же живой». Но и этот пункт в свою очередь должен быть только вероятным и должен, следовательно, входить в последовательность зарегистрированных официальных ошибок, некоторые из которых окажутся не ошибками. Это значит, что мы должны собрать случаи, когда мы ошибочно верили, что лицо, зарегистрированное как умершее, оказалось все-таки живым. Этому процессу не может быть конца, если все наше знание только вероятно, а вероятность имеет только статистический характер. Если мы хотим избежать бесконечного регресса, а все наше знание является только вероятным, то «вероятность» должна интерпретироваться как «степень правдоподобия» и должна определяться не статистически, а как-либо иначе. Статистическая вероятность может определяться только на основе действительной или постулируемой достоверности.

Я вернусь в Рейхенбаху в связи с индукцией. А сейчас я хочу разъяснить мой собственный взгляд в отношении связи математической вероятности с естественным ходом вещей в природе. Возьмем в качестве примера закон больших чисел Бернулли, выбрав самый простой из возможных случаев. Мы видели, что если мы соберем все возможные целые числа, состоящие из n знаков, каждое из которых будет или 1, или 2, то, если n является большим скажем, не меньшим, чем 1000,- огромное большинство возможных целых чисел будет иметь приблизительно одинаковое число единиц и двоек. Это есть только применение того факта, что при разложении бинома (х + у)n, когда n большое, сумма биноминальных коэффициентов около середины будет мало отличаться от суммы всех коэффициентов, каковая равна 2n. Но какое это имеет отношение к утверждению, что если я буду достаточно много раз бросать монету, то я, вероятно, получу приблизительно одинаковое число выпадений лицевой и оборотной сторон? Первое есть логический факт, второе, очевидно, является эмпирическим фактом; какова же связь между ними?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже