Читаем Человеческое познание его сферы и границы полностью

Допустим, например, что вы исследуете вопрос, предрасположен ли мужчина к самоубийству вследствие того, что он имеет сварливую жену. В этом случае x обозначает жен, а у — мужей, класс О состоит из сварливых женщин, а класс p — из самоубийц. Тогда при том, что жена принадлежит к классу О, наш вопрос заключается в следующем: как часто ее муж принадлежит к классу p?

Рассмотрим отрезки двух последовательностей, состоящие из первых n членов каждой последовательности. Допустим, что среди первых n членов х имеется а членов, принадлежащих к классу О, и допустим, что из них имеется b членов, таких, что соответствуют у и принадлежат к классу p; соответствующий у есть член с тем же самым индексом. Тогда мы говорим, что во всем отрезке от х1 до Xn «относительная частота» О и P есть b/а. Если все х принадлежат к классу О, то а=n и относительная частота есть b/n. Обозначим эту относительную частоту выражением «Hn (О, p)».

Теперь перейдем к определению «вероятности p при данном О», которую мы обозначим как «W(0, p)». Определение следующее: W (О, p) есть предел Нn(0, p), по мере того как n неограниченно увеличивается.

Это определение может быть значительно упрощено с помощью небольшого использования математической логики. Во-первых, нет необходимости иметь две последовательности, так как предполагается, что обе являются рядами (progressions) и имеется, следовательно, взаимно-однозначное соответствие их членов. Если это соответствие есть S, то сказать, что определенный член у принадлежит к классу p, равнозначно тому, что сказать, что соответствующий х принадлежит к классу членов, имеющих отношение S к тому или другому из членов P. Например, пусть S есть отношение жены к мужу, тогда если у есть женатый мужчина, ax — его жена, то утверждение, что у есть правительственный чиновник, является истинным, и только в том случае, если х есть жена правительственного чиновника.

Во-вторых, нет никакого преимущества в принятии случая, в котором не все х принадлежат к классу О. Определение применимо только в том случае, если бесконечное число членов х принадлежит к классу О, в этом случае те х, которые принадлежат к О, образуют ряд, а остальные могут быть отброшены. Таким образом, мы удержим все существенное в определении Рейхенбаха, если подставим следующее.

Пусть О будет рядом, а a каким-либо классом, из числа членов которого в важных случаях имеются члены, которые в последовательности О являются последующими за любым данным членом. Пусть m будет число членов а среди первых n членов О. Тогда W(О, а) определяется как предел m/n, когда n неограниченно возрастает.

Возможно, по недосмотру Рейхенбах говорит, как если бы понятие вероятности было применимо только к бесконечным рядам и не было применимо к конечным класса. Я не могу думать, что он имел это в виду. Человеческая раса, например, есть конечный класс, и мы хотим применить вероятность к статистике жизни, что было бы невозможно согласно букве определения. Психологически, когда Рейхенбах говорит о пределе для n-бесконечности, он думает о предел как некотором числе, к которому легко приблизиться всякий раз, когда n с эмпирической точки зрения является большим, то есть когда оно недалеко от того максимума, который наши средства наблюдения позволяют нам достичь. У него есть аксиома или постулат о том, что, когда есть такое число для каждого большого доступного наблюдению n, оно приблизительно равно пределу для n-бесконечности. Это нелепая аксиома не только потому, что она произвольна, но и потому, что большинство рядов, с которыми нам приходится иметь дело вне чистой математики не являются бесконечными; в самом деле, можно сомневаться, являются ли таковыми какие-либо из них. Мы привыкли считать пространство-время непрерывным, что предполагает существование бесконечных рядов; но это предположение не имеет иного основания, кроме математического удобства.

Для того чтобы сделать теорию Рейхенбаха насколько возможно более адекватной, я буду исходить из того, что там, где речь идет о конечных классах, должно быть сохранено определение, данное в предшествующей главе, и что новое определение имеет целью только расширение, позволяющее нам применять вероятность к бесконечным классам. Таким образом, его Нn(0, p) будет вероятностью, но приложимой только к первым n членам ряда.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже