Читаем Человеческое познание его сферы и границы полностью

"Если дан объект а, отношении которого мы хотим знать, какую степень правдоподобия приписать предложению "a есть p", и если дано, что единственно относящееся к делу знание, которое мы имеем, есть "а есть а", тогда степень правдоподобия предложения "a есть p" будет представлять собой математическую вероятность, измеряемую отношением числа членов, общих для альфа, и бета, к числу членов альфа.

Иллюстрируем это еще раз примером с самым высоким человеком в Соединенных Штатах и шансом, что он живет в штате Айова. Здесь, во-первых, мы имеет описание d, приложимое к одному и только одному человеку из числа названных людей А1, А2, ... an, где n есть число жителей Соединенных Штатов. Это значит, что одно и только одно из предложений "d= Аr" (где r обозначает любого жителя от 1 до n) известно как истинное, но мы не знаем, какое именно. Если это действительно есть все наше относящееся к делу знание, то мы предполагаем, что любое из предложений "d=Ar' столь же правдоподобно, как и любое другое. В этом случае каждое имеет правдоподобие 1/n. Если в штате Айова имеется m жителей, то предложение "d живет в штате Айова" эквивалентно дизъюнкции m предложений "d= Аr" и, следовательно, имеет m раз правдоподобие любого из них, поскольку они взаимно исключают друг друга. Следовательно, оно имеет степень правдоподобия, измеряемую дробью m/n,

Конечно, в вышеприведенной иллюстрации предложения "d = Ar" не все одного уровня. Свидетельство позволяет нам исключить детей, людей низкого роста и, возможно, женщин. Это показывает, что применение этого принципа связано с затруднениями, но это не значит, что он ложен.

Случай с вытаскиванием карты из колоды ближе подходит к осуществлению условий, требуемых принципом. Здесь описание "d" есть "карта, которую я собираюсь вытащить". Все 52 карты имеют то, что мы можем рассматривать как названия: "двойка пик" и так далее Мы имеем, таким образом, 52 предложения "d = Аr", из которых одно и только одно истинно, но мы не имеем никаких данных, которые склоняли бы нас в пользу одного, а не какого-либо другого. Следовательно, правдоподобие каждого равно 1/52. Если мы это признаем, то это связывает правдоподобие с математической вероятностью.

Мы можем, следовательно, сформулировать как возможную форму "принципа индифферентности" следующую аксиому:

"Если дано описание d, относительно которого мы знаем, что оно применимо к одному и только одному из объектов а1, a2, ... an, и если дано, что мы не имеем знания относительно того, к какому из этих объектов приложимо это описание, тогда n предложений "d=ar" (1 меньше или равно r меньше или равно n) все равно правдоподобны и, следовательно, каждое имеет правдоподобие, измеряемое дробью 1/n".

Эта аксиома является более ограниченной, чем принцип недостаточного основания, как он обычно формулируется. Мы должны исследовать, будет ли она достаточной, а также имеем ли мы основание верить ей.

Сначала сравним вышеизложенное с принципом индифферентности Кейнса, рассмотренным нами в предшествующей главе. Вспомним, что этот принцип гласит: вероятности p и q в отношении данного свидетельства равны, если (1) свидетельство симметрично по отношению к p и q, (2) p и q "неделимы", то есть ни одно из них не является дизъюнкцией предложений той же самой формы, что и оно само. Мы решили, что это можно упростить: мы говорили, что нужно, чтобы p и q были бы значениями одной пропозициональной функции, скажем p = f(a) и q = f(b), чтобы "fx" не содержало ни a, ни b, и что, если свидетельство содержит упоминание a, скажем, в форме f(a), то оно должно также содержать y(b) и, наоборот, где yx в свою очередь не должно упоминать a или b. Этот принцип является до некоторой степени более общим, чем сформулированный в предшествующем абзаце: он имплицирует последний, но я сомневаюсь, имплицирует ли последний его. Мы, возможно, можем принять более общий принцип и переформулировать его следующим образом:

"Если даны две пропозициональные функции fx и yx, ни одна из которых не упоминает о или b, или если и упоминает их, то упоминает симметрично, тогда, при данных ya и yb, два предложения fa и fb имеют равное правдоподобие".

Этот принцип, если его принять, позволяет нам выводить правдоподобность из математической вероятности и делает все предложения математической теории пригодными для измерения степеней правдоподобия в случаях, к которым применима математическая теория.

Перейти на страницу:

Похожие книги

Теория нравственных чувств
Теория нравственных чувств

Смит утверждает, что причина устремленности людей к богатству, причина честолюбия состоит не в том, что люди таким образом пытаются достичь материального благополучия, а в том, чтобы отличиться, обратить на себя внимание, вызвать одобрение, похвалу, сочувствие или получить сопровождающие их выводы. Основной целью человека, по мнению Смита. является тщеславие, а не благосостояние или удовольствие.Богатство выдвигает человека на первый план, превращая в центр всеобщего внимания. Бедность означает безвестность и забвение. Люди сопереживают радостям государей и богачей, считая, что их жизнь есть совершеннейшее счастье. Существование таких людей является необходимостью, так как они являются воплощение идеалов обычных людей. Отсюда происходит сопереживание и сочувствие ко всем их радостям и заботам

Адам Смит

Экономика / Философия / Образование и наука