Таким образом, наши аксиомы удовлетворяются, если h есть конечный класс, не являющийся нулем, за исключением того, что возможные значения вероятности нужно ограничивать рациональными дробями.
Из этого следует, что математическая теория вероятности оказывается действенной при вышеприведенной интерпретации.
Мы должны, однако, исследовать вопрос о сфере применения таким способом определяемой вероятности, которая с первого взгляда кажется чересчур узкой для того употребления, которое мы хотим сделать из вероятности.
Прежде всего мы хотим, чтобы можно было говорить о шансе, что некоторое определенное событие будет иметь некоторые черты, а не только о шансе, что какой-либо рядовой член класса будет иметь их. Например, вы уже осуществили бросание с двумя костями, но я еще не видел результата этого бросания. Какова для меня вероятность, что выпали две шестерки? Мы хотели бы сказать, что эта вероятность равна 1/36, а если наше определение не позволяет нам сказать этого, то оно неадекватно. В таком случае мы сказали бы, что мы рассматриваем событие просто как представителя определенного класса; мы сказали бы, что если А рассматривается просто как член класса В, то шанс, что он принадлежит к классу А, равен А/В. Но здесь не совсем ясно, что значит «рассматривание определенного события просто как члена определенного класса». В таком случае предполагается следующее: нам дается некая характеристика какого-либо события, которая для более полного познания, чем наше, является достаточной, чтобы определить его однозначно; что же касается нашего познания, то мы не имеем способа узнать, принадлежит ли оно к классу А, хотя мы и знаем, что оно принадлежит к классу В. Бросив кости, вы знаете, принадлежит или не принадлежит ваше бросание к классу двойной шестерки, но я этого не знаю. Я знаю только то, что это бросание с двойной шестеркой есть одно из 36 возможных бросаний. Рассмотрим следующий вопрос: каков шанс, что самый высокий человек в Соединенных Штатах живет в штате Айова? Возможно, что кто-нибудь знает этого человека; во всяком случае, существует известный метод, с помощью которого можно узнать, кто этот человек. Если бы этот метод был успешно применен, то имелся бы определенный, не предполагающий вероятности ответ, именно или что он живет в штате Айова, или что он там не живет. Но я не знаю этого. Я ногу только утверждать, что население штата Айова равно числу m, население Соединенных Штатов равно числу n, и сказать, что в отношении этих данных вероятность, что он живет в штате Айова, равна m/n. Таким образом, когда мы говорим о вероятности определенного события, имеющего какую-то характеристику, мы всегда должны специфицировать те данные, по отношению к которым должна быть степень вероятности.
Мы можем обобщить: если дан любой объект о и дано, что а есть член класса В, то мы говорим, что в отношении к этому данному вероятность, что о есть член класса А, равна А/В в ранее определенном смысле. Эта концепция полезна, потому что часто о каком-либо объекте мы знаем достаточно много, чтобы определить его однозначно, не имея при этом достаточных знаний, чтобы определить, имеет ли он то или это свойство. «Самый высокий человек в Соединенных Штатах» есть определенное описание, применимое к одному и только одному человеку, но я не знаю, к какому человеку, к поэтому для меня является открытым вопрос, живет ли он в штате Айова. «Карта, которую я собираюсь вытащить», есть определенное описание, и через момент я буду знать, будет ли это описание относиться к красной или к черной карте, но к какой, я еще пока не знаю. Именно это очень обычное состояние частичного незнания в отношении определенных объектов делает полезным применение вероятности и к определенным объектам, а не только к полностью неопределенным членам классов.
Хотя частичное незнание есть то, что делает вышеприведенную форму вероятности полезной, незнание все-таки не включено в понятие вероятности, которое по-прежнему имело бы тот же смысл для всеведущего существа, как и для нас. Всеведущее существо знало бы, относится ли a к классу A, но все-таки могло бы сказать: по отношению к данному, что а есть B, вероятность того, что а есть A равна A/B.
При применении нашего определения к конкретным примерам в некоторых случаях возможна неясность. Чтобы сделать это понятным, мы лучше воспользуемся языком свойств, чем классов. Пусть класс А определяется свойством f, а класс B свойством y. Тогда мы скажем: