Это предложение позволяет нам решить, например, следующую задачу: дано n +1 сумок, из которых первая содержит n черных шаров и ни одного белого, вторая содержит n — 1 черных шаров и один белый; r+1-я сумка содержит n — r черных шаров и r белых. Берется одна сумка, но неизвестно, какая именно; из нее вынимается m шаров, и оказывается, что все они белые; какова вероятность, что взята была сумка r? Исторически эта задача важна в связи с претензией Лапласа на доказательство индукции.
Возьмем, далее, закон больших чисел Бернулли. Этот закон устанавливает, что если на каждое число случаев шанс наступления определенного события есть p, то при данных любых двух сколько угодно малых числах e и s шанс, что, начиная с достаточно большого числа случаев, отношение случаев наступления события всегда будет отличаться от p больше, чем на величину s, будет меньше, чем e.
Поясним это с помощью примера с бросанием монеты. Допустим, что выпадение лицевой и оборотной сторон монеты одинаково вероятно. Это значит, что, по-видимому, после достаточно большого количества бросаний отношение выпадений лицевой стороной никогда не будет отличаться от 1/2 больше, чем на величину s, как бы мала ни была эта величина s; далее, как бы s не было мало, где бы то ни было после n бросаний, шанс такого отклонения от 1/2 будет меньше e, если только n достаточно большое.
Так как это предложение имеет большое значение в приложениях теории вероятности, например в статистике, постараемся получше освоиться с точным смыслом того, что утверждается в вышеприведенном примере с бросанием монеты. Прежде всего я утверждаю, что начиная с определенного числа их выпадения процент выпадения монеты лицевой стороной всегда будет, скажем, между 49 и 51. Допустим, что вы оспариваете мое утверждение и мы решаем проверить его эмпирически насколько только возможно. Значит, теорема утверждает, что чем дольше мы будем продолжать проверку, тем больше будет казаться, что мое утверждение порождено фактами и что по мере того, как число бросаний будет увеличиваться, эта его вероятность будет приближаться к достоверности как к пределу. Предположим, что с помощью этого эксперимента вы убеждаетесь, что начиная с некоторого числа бросаний процент выпадения лицевой стороной всегда остается между 49 и 51, но теперь я утверждаю, что начиная с некоторого большего числа бросаний этот процент будет всегда оставаться между 49,9 и 50,1. Мы повторяем наш эксперимент, и спустя некоторое время вы снова в этом убеждаетесь, хотя на этот раз, возможно, спустя большее время, чем прежде. После любого данного числа бросаний останется шанс, что мое утверждение не подтвердится, но этот шанс все время будет уменьшаться по мере того, как число бросаний будет увеличиваться, и может стать меньше любой приписанной ему величины, если бросание будет продолжаться достаточно долго.
Вышеприведенное предложение легко вывести из аксиом, но оно не может, конечно, быть адекватно проверено эмпирически, поскольку оно предполагает бесконечную последовательность испытаний. Если будет казаться, что испытания, которые мы можем осуществить, будут подтверждать его, то возражающий всегда сможет сказать, что они не показали бы этого, если бы мы продолжали испытание дальше; а если будет казаться, что они не подтверждают его, то защищающий теорему сможет точно так же сказать, что они еще не достаточно долго продолжали испытания. Теорему нельзя, таким образом, ни доказать, ни опровергнуть эмпирическим свидетельством.
Вышеприведенные предложения являются основными предложениями чистой теории вероятности, имеющими большое значение в нашем исследовании. Я хочу, однако, сказать еще кое-что по вопросу о a +1 сумках, каждая из которых содержит n белых и черных шаров, причем r+1-я сумка содержит r белых шаров и n — r черных шаров. Мы исходим из следующих данных: я знаю, что сумки содержат разные количества белых и черных шаров, но при этом нет никакого способа отличить эти сумки друг от друга по внешним признакам. Я выбираю одну сумку наудачу и вынимаю из нее один за другим m шаров, причем, вынимая эти шары, я не кладу их обратно в сумку. Оказывается, что все вынутые шары белые. Учитывая этот факт, я хочу знать две вещи: во-первых, каков шанс того, что я выбрал сумку, содержащую одни только белые шары? Во-вторых, каков шанс того, что следующий шар, который я выну, окажется белым?
Мы рассуждаем следующим образом. Путь h будет тот факт, что сумки имеют вышеописанный вид и содержание, а q — тот факт, что было вынуто m белых шаров; пусть также Pr будет гипотеза, что мы выбрали сумку, содержащую r белых шаров. Очевидно, что г должно быть по крайней мере таким же большим, как и m, то есть если г меньше, чем m, то Pr/qh=Q и q/Prh=0. После некоторых вычислений оказывается, что шанс, что мы выбрали сумку, в которой все шары белые, равен (m +1)/(n +1).
Теперь мы хотим знать шанс, что следующий шар будет белым. После некоторых дальнейших вычислений оказывается, что этот шанс равен (m +1)/(m +2).