Читаем Черные дыры и молодые вселенные полностью

Предварительные эксперименты Нейла А. Портера и Тревора К. Уикса из дублинского Юниверсити-колледжа показали, что, если черные дыры взрываются так, как предсказывает теория Хейдждорна, за век в нашей области Галактики случается менее двух взрывов черной дыры на кубический световой год. Из этого следует, что плотность первобытных черных дыр меньше, чем 100 миллионов дыр на кубический световой год.

Наверное, существует возможность значительно увеличить чувствительность таких наблюдений, и даже если они не дадут никакого положительного свидетельства о первобытных черных дырах, то все равно будут представлять собой большую ценность. Если наблюдения установят низкий верхний предел плотности таких черных дыр во Вселенной, они покажут, что ранняя Вселенная должна была быть очень ровной и не турбулентной.

Большой Взрыв схож со взрывом черной дыры, но в гораздо большем масштабе. Поэтому можно надеяться, что, поняв, как черные дыры порождают частицы, мы придем к аналогичному пониманию, как Большой Взрыв породил все во Вселенной. В черной дыре материя сжимается и пропадает навек, но на ее месте возникает новая материя. Поэтому, может быть, существовала какая-то более ранняя фаза Вселенной, когда материя сжималась, чтобы опять возникнуть после Большого Взрыва.

Если материя, сжавшаяся в черную дыру, имела какое-то сальдо электрического заряда, получившаяся черная дыра будет иметь такой же заряд. Это означает, что черная дыра имеет тенденцию притягивать члены пар виртуальных частиц-античастиц с противоположным зарядом и отталкивать члены с таким же зарядом. Следовательно, черная дыра будет испускать преимущественно частицы с зарядом того же знака, что имеет сама, и быстро разрядится. Аналогично, если сжимающаяся материя имеет сальдо момента импульса, черная дыра будет вращаться и преимущественно испускать частицы, отбирающие ее момент импульса. Причина, почему черные дыры «запоминают» электрический заряд, момент импульса и массу сжимающейся материи, которая «забывает» все остальное, заключается в том, что эти три величины сочетаются с полями, действующими на большом расстоянии: в случае заряда – с электромагнитным полем, а в случае момента импульса и массы – с гравитационным.

Эксперименты Роберта X. Дика из Принстонского университета и Владимира Брагинского из Московского государственного университета показали, что не существует далеко действующих полей, которые соответствовали бы квантовому свойству, называемому барионным числом (барионы – это класс частиц, включающий в себя протоны и нейтроны). Следовательно, черная дыра, получившаяся в результате сжатия множества барионов, забудет свое барионное число и будет излучать равное количество барионов и антибарионов. Поэтому, когда черная дыра исчезнет, она нарушит один из самых нежно любимых законов физики частиц – закон сохранения барионов.

Хотя гипотеза Бекенштейна о конечной энтропии черных дыр для своей стройности требует, чтобы черные дыры излучали тепло, тем не менее, на первый взгляд, кажется истинным чудом, что тщательные расчеты квантовой механики, касающиеся возникновения частиц, говорят о появлении излучения с тепловым спектром. Объясняется это тем, что выпущенные частицы проделывают тоннель из черной дыры, о которой внешний наблюдатель не знает ничего, кроме ее массы, момента импульса и электрического заряда. Это означает, что все сочетания или конфигурации выпущенных частиц, имеющих одну и ту же энергию, момент импульса и электрический заряд, одинаково вероятны. В самом деле, возможно, что черная дыра выпустит телевизор или десятитомник Пруста в кожаном переплете, но число конфигураций частиц, соответствующее таким экзотическим возможностям, бесконечно мало. Гораздо большее число конфигураций соответствует излучению со спектром, близким к тепловому.

Излучение черных дыр добавило еще большую степень неопределенности, или непредсказуемости, к той, что и так ассоциировалась с квантовой механикой. В классической механике можно предсказать результаты измерения как скорости, так и положения частицы. В квантовой механике принцип неопределенности гласит, что можно предсказать результат лишь одного из измерений – либо скорости, либо положения, но не обоих. Таким образом, способность наблюдателя делать определенные предсказания, по сути, урезается наполовину. С черными дырами ситуация еще хуже. Поскольку частицы, излученные черной дырой, приходят из области, о которой наблюдатель имеет ограниченные знания, он не может с определенностью предсказать ни скорость, ни положение частиц, ни какую-либо их комбинацию. Все, что он может предсказать, – это вероятность, с которой определенные частицы будут выпущены. И потому, кажется, Эйнштейн вдвойне ошибся, сказав: «Бог не играет в кости». Рассмотрев испускание частиц черной дырой, похоже, мы можем сказать, что Бог не только играет в кости, но порой еще и бросает их там, где никто не видит.

11. Черные дыры и младенцы-вселенные16

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки