Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

торы будут особенно умны, они смогут обойти этот стандартный квантовый предел. Он спорил, что должен быть другой путь проектирования чувствительного датчика, такой, что непредсказуемый и неизбежный пинок не будет скрывать влияние гравитационных волн на антенну. Такой чувствительный датчик Брагинский назвал квантово-неразрушающим77: «квантово», потому что пинок датчика происходит согласно законам квантовой механики, «неразрушающим», потому что чувствительный датчик делается так, чтобы пинок не разрушал то, что вы хотите измерить — влияние гравитационных волн на твердотельный детектор. У Брагинского не было рабочей конструкции квантово-неразрушающего датчика, но его интуиция подсказывала ему, что такой детектор можно сделать.

На сей раз я слушал внимательно, и следующие два года моя группа в Калтехе и группа Брагинского в Москве пытались изобрести квантово-неразрушающий датчик.

Мы нашли ответ одновременно осенью 1977 г., но пришли к нему разными путями. Я живо помню мое возбуждение, когда идея пришла ко мне и Карлтону Кейвсу78 во время интенсивного обсуждения за завтраком в Сальном (студенческий кафетерий Калтеха). И я помню то горько-сладкое чувство, когда узнал, что Брагинский, Юрий Воронцов и Фарид Халили в значительной части нашли ту же идею в Москве в то же самое время. Горькое, поскольку я испытываю великое удовлетворение, когда оказываюсь первым в открытии чего-то нового, сладкое, потому что мне настолько нравится Брагинский, что я испытываю удовольствие, разделяя с ним честь открытия.

Наша полная идея квантово-неразрушающего измерения довольно абстрактна и позволяет разработать разнообразные датчики, преодолевающие стандартный квантовый предел Брагинского. Абстрактность идеи, однако, делает ее довольно сложной для объяснения, поэтому здесь я опишу только один (не очень практичный) пример квантово-неразрушающего детектора79. Этот пример Брагинский назвал стробоскопическим детектором.

Стробоскопический детектор основан на характерной особенности колебаний: если болванке дать очень резкий пинок неизвестной силы, то амплитуда колебаний изменится, но независимо от того, насколько изменится амплитуда, точно через один период колебаний после пинка колеблющийся торец болванки вернется к тому же самому положению, которое он имел в момент пинка (черные точки на рис. 10.5). По крайней мере, так будет, если гравитационная волна (или некоторая другая сила) в это время не сжимала и не растягивала болванку. Если же волна (или другая сила) в это время все же сжимала болванку, то положение болванки через один период изменится.

Чтобы обнаружить волну, в таком случае нужно делать датчик, который делает стробоскопические измерения колеблющихся торцов болванки, датчик, который очень быстро измеряет положение торцов болванки один раз за период колебаний. Такой датчик каждый раз во время измерения будет пинать болванку, но пинки не будут изменять положение торцов болванки в те моменты, когда производятся последовательные измерения. Если обнаружится, что положение изменилось, значит, на болванку действовала гравитационная волна (или некоторая другая сила).


***

Хотя квантово-неразрушающие датчики решили задачу стандартного квантового предела Брагинского, к середине 1980-х я стал довольно пессимистично оценивать перспективность и плодотворность гравитационно-волновой астрономии на основе твердотельных детекторов. Мой пессимизм был связан с двумя причинами.

Во-первых, хотя твердотельные детекторы, построенные Вебером, Брагинским и другими, достигли гораздо лучшей чувствительности, чем можно было даже мечтать в 1950-х, они все еще могли уверенно детектировать волны с амплитудой только 10-17 и более. Это было в 10000 раз меньше, чем требовалось для успеха, если я и другие правильно оценили амплитуду гравитационных волн, достигающих Земли. Само по себе это возражение еще не было серьезным, поскольку продвижение технологии часто приводило к 10000-кратному улучшению чувствительности инструментов в течение в двух десятилетий или даже быстрее. [Одним из примеров является угловое разрешение радиотелескопов, которое улучшилось с десятков градусов в середине 1940-х до нескольких угловых секунд в середине 1960-х (глава 9). Другим примером может служить чувствительность астрономических детекторов рентгеновского излучения, которая выросла в 1010 раз между 1958 и 1978 гг., т. е. улучшалась со средним темпом 10000 раз каждые восемь лет (глава 8).] Однако темп улучшения чувствительности твердотельных антенн был столь медленным, а перспективы развития техники и технологии в этой области были настолько умеренными, что не было видно никакой разумной возможности достичь 10000-кратного роста чувствительности в обозримом будущем. Таким образом, оставалось рассчитывать только на гравитационные волны, гораздо более сильные, чем оценка 10-21 — возможность реальная, но вряд ли кто-нибудь был счастлив, на нее полагаясь.

Перейти на страницу:

Похожие книги