Читаем Черные дыры и складки времени. Дерзкое наследие Эйнштейна полностью

В качестве основы для анализа белых карликов с промежуточными значениями плотности необходимо было иметь уравнение состояния их вещества при любых значениях плотности — от низкой до предельно большой. (Под термином «состояние» вещества физики понимают плотность и давление в веществе, или, что то же самое, его плотность и сопротивление сжатию, поскольку из плотности и сопротивления можно вычислить давление. Под «уравнением состояния» понимается соотношение между сопротивлением и плотностью, т. е. сопротивление «как функция» плотности.)

К концу 1934 г., когда Чандрасекар принял вызов Амбарцумяна, уравнение состояния для белых карликов, благодаря вычислениям Эдмунда Стоунера из университета Лидса в Англии и Вильгельма Андерсона из Тартусского университета в Эстонии, было уже известно. Уравнение состояния Стоунера—Андерсона показало, что когда вещество белого карлика сжимается все сильнее и сильнее, переходя от нерелятивистского режима низкой плотности и малых скоростей электронов в релятивистскую область чрезвычайно высоких плотностей и околосветовых скоростей движения электронов, сопротивление вещества сжатию плавно спадает от 5/3 до 4/3 (левая часть рис. 4.3). Трудно придумать более простое поведение.

Чтобы ответить на вызов Амбарцумяна, Чандрасекар должен был соединить уравнение состояния (зависимость сопротивления от плотности) с законами баланса между давлением и гравитацией и, исходя из этого, получить дифференциальное уравнение39, описывающее внутреннюю структуру звезды, т.е. изменение плотности звезды в зависимости от расстояния до ее центра. Затем требовалось решить полученное дифференциальное уравнение для десятка или около того звезд, плотность вещества в центре которых меняется от низких до чрезвычайно высоких значений. Только решая дифференциальное

уравнение для каждой отдельной звезды, он мог узнать ее массу и установить меньше ли она 1,4 солнечной.

Для звезд как с малой, так и с предельно большой плотностью, исследованных Чандрасекаром на борту парохода, решение соответствующего дифференциального уравнения и вытекающее из него строение звезды нашлось в книге Эддингтона. Однако для звезд с промежуточными значениями плотности вывести решение с помощью математических формул Чандрасекару никак не удавалось. Вычисления были слишком сложны. Ничего не оставалось, кроме как решить дифференциальные уравнения численно, с помощью счетной машины.

В 1934 г. счетные машины весьма отличались от тех компьютеров, которые появились в 90-е годы. Они напоминали, скорее, простейшие из карманных калькуляторов. За один раз они могли лишь перемножить два числа, причем пользователю требовалось сначала вручную ввести эти числа, а затем повернуть рукоятку. Рукоятка приводила в движение сложную систему шестеренок и колесиков, выполнявших умножение и выдававших ответ.

Но даже и такие калькуляторы были тогда роскошью, и получить к ним доступ было непросто. У Эддингтона, однако, был один -«Брауншвайгер», размер которого примерно соответствовал размеру настольных персональных компьютеров 90-х, и поэтому Чандрасекар, к тому времени уже хорошо знакомый с великим человеком, просто пришел к Эддингтону и попросил на время одолжить ему машину. В тот момент Эддингтон был вовлечен в спор о белых карликах с Милном и был весьма заинтересован поскорее узнать их детально рассчитанную внутреннюю структуру; поэтому он позволил Чандрасекару перенести «Брауншвайгер» в его комнату в Тринити-колледже,

Вычисления были длинными и утомительными. Каждый вечер после обеда Эддингтон, работавший в Тринити-колледже, поднимался к Чандрасекару, чтобы приободрить его и взглянуть, как продвигается дело.

Наконец, много дней спустя, Чандрасекар закончил. Он ответил на вызов Амбарцумяна. Для каждого из десяти типичных белых карликов он рассчитал внутреннюю структуру и затем, зная ее, — полную массу и поперечный размер звезды. Все массы, как и предполагалось, оказались меньше 1,4 солнечной. Более того, когда он нанес все значения масс и диаметров на диаграмму и соединил точки, получилась одна плавная кривая (правая часть рис. 4.3); измеренные массы и поперечники Сириуса В, а также других известных белых карликов относительно хорошо согласовывались с полученной кривой. (С учетом исправлений, полученных в результате современных астрономических наблюдений, согласие становится еще лучше; обратите внимание на новые значения 1990 г. массы и поперечника Сириуса В на рис. 4.3.) Гордый своими результатами, полагая, что астрономы всего мира, наконец, согласятся с его утверждением, что белые карлики не могут быть тяжелее, чем 1,4 массы Солнца, Чандрасекар был счастлив.

Перейти на страницу:

Похожие книги