Читаем Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу полностью

1. Логика цифрового процесса. Каждый раз, входя в интеллектуальную систему, мы участвуем в каком-то процессе: бронируем машину, обращаемся за страховой выплатой, заключаем финансовую сделку или проверяем статус МРТ-аппарата. В этом нет ничего исключительно нового. IT-специалист из 1990-го распознал бы технические элементы, управляющие протекающими внутри интеллектуальной системы процессами. Революционная составляющая интеллектуальных систем в том, что они преобразуют многие ручные процессы в автоматизированные. Вспомните еще раз пример с противопоставлением Uber и такси. Процесс заказа автомобиля в обычном такси выполняется вручную (например, клиент звонит, посредник информирует диспетчера, диспетчер связывается по радио с подходящим водителем и т. д.). В Uber весь процесс автоматизирован. Когда этот оцифрованный процесс вылился в миллионы транзакций, революция в отрасли состоялась. Мы опишем, как это сделать, во второй половине книги. Однако сейчас главная проблема в том, что, хотя руководящая процессным слоем искусственного интеллекта технология довольно проста, правильно структурировать этот лежащий в основе процесс – крайне трудная работа.

2. Машинный интеллект. Вот это действительно новая и другая технология современной машины. С помощью комбинации алгоритмов, процесса автоматизации, машинного обучения и нейронных сетей система подражает «обучению» через получение опыта, то есть через расширение набора данных. Именно так она может автоматизировать рабочий процесс (например, чтение рентгеновского обследования), инструктировать работников по поводу лучшего следующего шага (например, продавец будет знать точную цену, которая с наибольшей вероятностью приблизит сделку) и распознавать рыночные тренды, что поможет создать следующий прорывной продукт. Внутренний «счетчик» (программный механизм внутри интеллектуальной системы) и есть машинный разум, настоящее сердце ИИ. Если смотреть с этой точки зрения, то все не так страшно, загадочно или безнадежно сложно. Не поймите нас неправильно: мы не умаляем техническую сложность этой созидательной работы. Но также в ней нет ничего мистического. Все эти разговоры про «духа в машине»6 в реальном мире едва ли имеют отношение к узкому ИИ. Это ничуть не больше и, конечно, ничуть не меньше, поскольку находится в корпусе новой машины, сердца искусственного интеллекта.

3. Программная экосистема. Наш, как видится, магический опыт взаимодействия с интеллектуальными системами кажется бесшовным, единым, однако мы никогда не взаимодействуем с только одним участком ПО. Обычно эти системы составляют экосистему из десятков разнообразных инструментов, связанных интерфейсом прикладного программирования (API), являющимся частями программного обеспечения, соединяющими один инструмент с другим, как детали Lego. Uber, например, привлекает богатый набор инструментов, в том числе Twilio для облачной коммуникации, Google для карт, Braintree для оплаты, SendGrid для отправки e-mail, и так далее. Благодаря программному интерфейсу Uber у каждого из нас есть собственный первоклассный опыт общения с этой системой, но на самом деле мы взаимодействуем с целой экосистемой инструментов и сервисов.

Это бизнес-книга для технологичной эпохи. Мы не планируем вдаваться в мельчайшие подробности конкретных технологий, включенных в сегодняшний искусственный интеллект. Мы могли бы написать еще одну полноценную книгу о машинном обучении, глубоком обучении и нейронных сетях (эти темы – в топе популярности в ведущих мировых университетах), но, честно говоря, это было бы излишним, поскольку сегодня на рынке уже представлено огромное количество обучающих ресурсов.

<p>Данные от вещей и учетных систем</p>

Исходных параметров в новых машинах много, и они весьма разнообразны. Некоторые являются зрелыми системами на базе ERP, в другие будет в реальном времени поступать информация от оснащенных оборудованием предметов – тот самый Ореол кодов с данными об окружающих продуктах, людях и местах, – то есть постоянно информировать свой нервный центр о том, что происходит вокруг. Со временем эти параметры будут изменяться, иногда быстро и радикально. Эти вводные параметры отвечают за создание контекстуализированных, ценных данных. Без новых источников данных строить или подпитывать ваши современные машины будет сложно. За выработку новой информации – кода – будут ответственны сенсоры в вашем мобильном телефоне, одежде, спортивном оборудовании, машинах, дорогах и буквально любых других физических объектах. Связь этих сенсоров с интеллектуальными системами – это и есть зарождающийся «Интернет вещей».

Перейти на страницу:

Все книги серии Top Business Awards

Похожие книги

Ценность ваших данных
Ценность ваших данных

Что такое данные и как они появляются? Как их хранить и преобразовывать? Как извлечь ценность из имеющихся информационных ресурсов и непрерывно ее повышать? Как ускорить импортозамещение? Как наладить управление данными, чтобы достойно противостоять дизруптивным воздействиям? Все это и многое другое вы найдете в книге «Ценность ваших данных».Книга состоит из двух частей. В первой прослеживается смена парадигм в отношении к данным, происходившая от первой научной революции до четвертой промышленной.Подробно рассматриваются особенности данных как наиболее ценного актива организации и основные барьеры на пути извлечения из них ценности. Вторая часть посвящена описанию основных подходов к устранению барьеров. Анализируются ключевые области управления данными на разных этапах их жизненного цикла – от планирования до расширения возможностей применения.Зачем читатьДанные в качестве самостоятельного суперценного актива стремительно входят в повестку дня как менеджмента и собственников компаний, так и руководителей государственных органов и учреждений. И очень важно иметь источники информации, позволяющие его осознать, научиться с ним работать и превратить в конкурентное преимущество. Предлагаемая книга – одно из тех изданий, которые позволяют получить своевременные инструменты для создания современной высокоэффективной организации и вывода своего бизнеса в лидеры рынка.Для когоКнига будет полезна как новичкам в вопросах управления данными, так и опытным специалистам, которые хотят углубить свои знания в этом направлении.

Александр Константинов , Николай Скворцов , Сергей Борисович Кузнецов

Деловая литература
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература