В последние десятилетия биологи разработали высокоэффективные инструменты и потратили много усилий на идентификацию и подсчет различных компонентов живых клеток. Например, моя лаборатория активно трудилась над секвенированием всего генома делящихся дрожжей. Это делалось вместе с Бартом Барреллом, работавшим до того с Фредом Сенгером, человеком, который изобрел первый практичный и надежный способ секвенирования ДНК еще в 1970-х гг. В ходе проекта я несколько раз встречался с Фредом, хотя официально он уже был на пенсии. Это был весьма спокойный, вежливый человек, он любил разводить розы и, подобно многим из самых успешных ученых, кого мне довелось встретить за долгие годы, никогда не жалел своего времени, беседуя с более молодыми учеными и вдохновляя их. Когда он пришел в лабораторию к Барту, у него был вид заблудившегося садовника, но садовника, между прочим, получившего две Нобелевские премии!
Барт и я на пару организовали совместное исследование с участием примерно дюжины европейских лабораторий для расшифровки последовательности всего генома делящихся дрожжей, состоящего примерно из 14 миллионов «букв» ДНК. Для завершения проекта потребовалось около 100 человек и 3 года, и, если я не ошибаюсь, то был третий эукариот, чей геном был точно и в полном объеме секвенирован. Это случилось около 2000 г. Сегодня с такой задачей могут справиться пара человек за день! Поражает, насколько был усовершенствован метод секвенирования ДНК за минувшие два десятилетия.
Такого рода сбор данных важен, но лишь как первый шаг на пути к более сложной и ответственной цели – пониманию, как все это вместе работает. Учитывая сказанное, полагаю, наибольшие успехи в дальнейшем исследовании будут связаны с подходом к клетке как к состоящей из ряда отдельных модулей, совместно действующих для ее жизнеобеспечения. Слово «модуль» здесь употреблено для описания набора компонентов, функционирующих как единое целое для выполнения определенной задачи по обработке информации.
Согласно такому определению, регулятор Уотта можно назвать «модулем» с четко определенной целью контроля скорости двигателя. Другим примером служит открытая Жакобом и Моно система регуляции работы генов для контроля потребления сахара бактериями. В терминах информации эти механизмы аналогичны: они относятся к модулям обработки информации, называемым «замкнутая система управления с отрицательной обратной связью». Модуль такого рода может применяться для поддержания стабильного состояния. Данные модули широко используются в биологии. Они направлены на то, чтобы уровень сахара у вас в крови был относительно постоянным, даже когда вы едите сладкое вроде пончика в сахарной пудре. Клетки в поджелудочной железе могут обнаруживать избыток сахара в крови и реагировать введением в кровоток гормона инсулина. В свою очередь, инсулин приводит в действие клетки вашей печени, мышц и жировых тканей, чтобы они поглощали сахар, снижая его уровень в крови и превращая его в нерастворимый гликоген или жир, который будет храниться для применения в будущем.
Другой вид модуля – контур с положительной обратной связью, который может образовывать необратимые переключатели, те, что после включения не выключаются. Подобным образом контур с положительной обратной связью контролирует созревание яблок. Клетки созревающего яблока вырабатывают газ этилен, который и ускоряет созревание и повышает выработку этилена. В результате яблоки не могут стать менее зрелыми, а соседствующие плоды помогают друг другу созревать быстрее.
При объединении разных модулей результаты могут быть более сложными. Например, существуют механизмы, способные производить переключатели, реверсивно переходящие из активного состояния в неактивное, или осцилляторы, которые постоянно и ритмично пульсируют таким же образом. Биологи обнаружили осцилляторы, действующие на уровне активности гена и уровня белка, – они служат различным целям, например проведению различий между днем и ночью. У растений в листьях есть клетки с осциллирующей сетью генов и белков, которые измеряют течение времени и тем самым позволяют растению предвидеть начало нового дня, активируя необходимые для фотосинтеза гены незадолго до рассвета. Другие осцилляторы импульсно включаются и выключаются в результате коммуникации между клетками. Один из примеров – сердце, прямо сейчас бьющееся у вас в груди. Другой пример – осциллирующая цепь нейронов, «тикающая» в спинном мозге, которая запускает специальную систему сокращений и сжатий мускулов ног, позволяющую вам ходить с постоянной скоростью. Все эти процессы не требуют от вас сознательных действий.