Эти разные коды хранят информацию в цифровом виде. «Цифровой» здесь означает, что информация хранится в разных комбинациях небольшого числа цифр или – в данном контексте – символов. В английском языке 26 базовых символов, букв алфавита; в компьютерах и смартфонах используется комбинация единиц и нулей; а символами ДНК становятся четыре нуклеотида. Великое достоинство цифровых кодов в том, что они без труда переводятся с одной кодирующей системы на другую. Это и выполняют клетки, когда «переводят» код ДНК в РНК и далее – в белок. Осуществляя это, они преобразуют генетическую информацию в физическое действие таким безупречным и гибким путем, который пока неподвластен системе, разработанной человеком. В то время как компьютерные системы должны «записать» для хранения информацию на другую физическую среду, молекула ДНК и есть та самая информация, поэтому хранение данных очень компактно. Технологи это понимают и разрабатывают способы кодирования информации на молекулах ДНК, чтобы архивировать ее максимально стабильным и экономичным образом.
Другая критически важная функция ДНК – способность очень точного самокопирования, что также представляет собой прямое следствие ее молекулярной структуры. В информационном контексте молекулярное сцепление пар оснований (A-T и G-C) предоставляет собой способ получения очень точных копий информации, хранящейся молекулой ДНК. Такая врожденная реплицируемость (способность создавать копии) в конечном счете и объясняет стабильность информации в ДНК. Некоторые последовательности генов сохранились в ненарушенных чередованиях делений клеток в течение немыслимо долгого времени. Бóльшие части генетического кода, необходимые для построения различных клеточных компонентов, таких как, например, рибосомы, явно одинаковы во всех организмах, будь то бактерии, археи, грибы, растения или животные. Отсюда следует, что наиболее существенная информация в данных генах сохраняется уже, возможно, три миллиарда лет.
В этом причина важного значения структуры двойной спирали. Открыв ее, Крик и Уотсон нашли ту нить, которая увязала концептуальное понимание генетиками по принципу «сверху вниз» того, как необходимая для жизни информация передается через поколения, с механистическим пониманием по принципу «снизу вверх» того, как построена и управляется клетка на уровне молекул. Этим особо подчеркивается тот факт, что химия жизни становится понятной только при рассмотрении ее в терминах информации.
Вторым примером сферы, где информация играет ключевую роль в понимании жизни, служит регуляция работы генов – набор химических реакций, используемых клеткой для «включения» и «выключения» генов. Исходя из нее, клетки используют лишь определенные части общего массива генетической информации, в которых они фактически нуждаются в какой-либо определенный момент времени. Огромное значение этой способности иллюстрируется развитием бесформенного эмбриона в полностью сформированное человеческое существо. Клетки в ваших почках, коже и мозге содержат примерно один и тот же набор из 22 000 генов, но управление генами означает, что гены для создания почки «включаются» в эмбриональных почечных клетках, а гены, чья функция заключается в создании кожи или мозга, «отключаются» и
Регуляция работы генов означает также, что идентичный набор генов может применяться для создания резко отличных друг от друга объектов на разных этапах их жизни. Каждая бабочка-лимонница, обладающая искусным и сложным строением, начинает свой путь с весьма непрезентабельной зеленой гусеницы; разительная метаморфоза одной формы в другую осуществляется путем использования разных частей все того же общего массива информации, хранящегося в том же геноме и по-разному применяемого. Регуляция работы генов не только важна в процессе роста и развития организмов, она – один из основных путей настройки всеми клетками своих механизмов и структур ради выживания и адаптации при изменении окружающих условий. Например, если бактерия встречает новый источник сахара, регуляция быстро введет в действие гены, нужные для усваивания этого сахара. Говоря иначе, в бактерии имеется саморегулирующаяся система, автоматически выбирающая конкретную генетическую информацию, которая необходима, чтобы повысить шансы на выживание и воспроизводство.