Целенаправленное поведение – один из отличительных признаков жизни, но оно возможно, только если живые системы действуют как единое целое. Одним из первых людей, осознавших в начале XIX в. эту отличительную черту живых существ, был философ Иммануил Кант. В своей книге «Критика способности суждения» Кант утверждал, что части живого тела существуют ради целого, а целое – ради своих частей. Он предположил, что живые организмы представляют собой упорядоченные, целостные и саморегулирующиеся сущности, управляющие своей судьбой.
Рассмотрим этот тезис на уровне клетки. Каждая клетка вмещает в себя огромное количество различных химических реакций и форм физической деятельности. Все быстро развалится, если все эти процессы будут вестись хаотично или в непосредственной борьбе друг с другом. Только посредством управления информацией клетка может наводить порядок в чрезвычайно сложной системе происходящих в ней процессов и тем самым достигать своей конечной цели – сохранять жизнь и размножаться.
Чтобы понять, как это работает, вспомним, что клетка – физическая и химическая машина, ведущая себя как единое целое. Можно многое понять о клетке, изучая ее отдельные компоненты, но для правильного функционирования различные химические реакции, происходящие в живой клетке, должны иметь связь друг с другом и действовать согласованно. Таким образом, при изменении окружения или внутреннего состояния – например, в клетке заканчивается сахар или ей попадается ядовитое вещество – она может ощущать это изменение и регулировать свои действия, тем самым поддерживая, насколько возможно, функционирование всей системы. Подобно тому как бабочка собирает информацию о мире и использует это знание для изменения собственного поведения, клетки ведут постоянный анализ химических и физических обстоятельств, как внутри, так и снаружи, и используют эту информацию для регулирования своего состояния.
Для того чтобы четче понимать, что означает для клеток использование информации для саморегулирования, стоит сначала посмотреть на то, как это достигается в менее замысловатых машинах, сконструированных человеком. Возьмем центробежный регулятор скорости, разработанный для жерновых мельниц голландским энциклопедистом Христианом Гюйгенсом и затем успешно доработанный шотландским инженером и ученым Джеймсом Уаттом в 1788 г.
Это устройство можно было устанавливать на паровую машину, чтобы та сохраняла постоянную скорость, не ускорялась и не ломалась. Оно состоит из двух металлических шаров, вращающихся вокруг центральной оси, приводимой в действие самой машиной. Если двигатель работает быстрее, центробежные силы толкают шары наружу и вверх. В результате открывается клапан, пар выходит из поршня, и машина замедляется. Если же двигатель работает медленнее, под силой тяжести металлические шары регулятора опускаются, клапан закрывается, и двигатель опять может развивать скорость до требуемой величины.
Лучше рассматривать регулятор Уатта в терминах информации. Положение шаров действует как считывание информации о скорости двигателя. Если скорость превышает заданный уровень, включается переключатель – паровой клапан, – который снижает скорость. Этим создается процессор информации, который может использоваться машиной для саморегулировки, не требующей присутствия человека. Уатт построил простое механическое устройство, действующее целенаправленным образом. Цель заключалась в поддержании постоянной скорости работы паровой машины, что и достигалось замечательным образом.
Системы, функционирующие концептуально сходным образом, хотя часто посредством гораздо более сложных и регулируемых механизмов, широко применяются в живых клетках. Такие механизмы обеспечивают эффективное достижение гомеостаза, то есть активного процесса поддержания условий, способствующих выживанию. Благодаря гомеостазу ваше тело поддерживает, к примеру, постоянную температуру, объем жидкости и уровень сахара в крови.
Процесс обработки информации пронизывает все стороны жизни. Для иллюстрации возьмем два примера сложных клеточных компонентов и процессов, в которых лучше всего разобраться в контексте информации.
Первый – ДНК и то, как ее молекулярная структура объясняет наследственность. Самым существенным фактом в отношении ДНК можно назвать то, что каждый ген представляет