Существует множество различных путей для организации процесса сканирования в синтаксическом анализаторе. В Unix системах авторы обычно используют getc и ungetc. Удачный метод, примененный мной, заключается в использовании одиночного, глобального упреждающего символа. Части процедуры инициализации служит для «запуска помпы», считывая первый символ из входного потока. Никаких других специальных методов не требуется… каждый удачный вызов GetChar считывает следующий символ из потока.
{–}
program Cradle;
{–}
{ Constant Declarations }
const TAB = ^I;
{–}
{ Variable Declarations }
var Look: char; { Lookahead Character }
{–}
{ Read New Character From Input Stream }
procedure GetChar;
begin
Read(Look);
end;
{–}
{ Report an Error }
procedure Error(s: string);
begin
WriteLn;
WriteLn(^G, 'Error: ', s, '.');
end;
{–}
{ Report Error and Halt }
procedure Abort(s: string);
begin
Error(s);
Halt;
end;
{–}
{ Report What Was Expected }
procedure Expected(s: string);
begin
Abort(s + ' Expected');
end;
{–}
{ Match a Specific Input Character }
procedure Match(x: char);
begin
if Look = x then GetChar
else Expected('''' + x + '''');
end;
{–}
{ Recognize an Alpha Character }
function IsAlpha(c: char): boolean;
begin
IsAlpha := upcase(c) in ['A'..'Z'];
end;
{–}
{ Recognize a Decimal Digit }
function IsDigit(c: char): boolean;
begin
IsDigit := c in ['0'..'9'];
end;
{–}
{ Get an Identifier }
function GetName: char;
begin
if not IsAlpha(Look) then Expected('Name');
GetName := UpCase(Look);
GetChar;
end;
{–}
{ Get a Number }
function GetNum: char;
begin
if not IsDigit(Look) then Expected('Integer');
GetNum := Look;
GetChar;
end;
{–}
{ Output a String with Tab }
procedure Emit(s: string);
begin
Write(TAB, s);
end;
{–}
{ Output a String with Tab and CRLF }
procedure EmitLn(s: string);
begin
Emit(s);
WriteLn;
end;
{–}
{ Initialize }
procedure Init;
begin
GetChar;
end;
{–}
{ Main Program }
begin
Init;
end.
{–}
Скопируйте код, представленный выше, в TP и откомпилируйте. Удостоверьтесь, что программа откомпилировалась и запустилась корректно. Затем переходим к первому уроку, синтаксическому анализу выражений.
Синтаксический анализ выражений
Начало
Если вы прочитали введение, то вы уже в курсе дела. Вы также скопировали программу Cradle в Turbo Pascal и откомпилировали ее. Итак, вы готовы.
Целью этой главы является обучение синтаксическому анализу и трансляции математических выражений. В результате мы хотели бы видеть серию команд на ассемблере, выполняющую необходимые действия. Выражение – правая сторона уравнения, например:
x = 2*y + 3/(4*z)
В самом начале я буду двигаться очень маленькими шагами для того, чтобы начинающие из вас совсем не заблудились. Вы также получите несколько хороших уроков, которые хорошо послужат нам позднее. Для более опытных читателей: потерпите. Скоро мы двинемся вперед.
Одиночные цифры
В соответствии с общей темой этой серии (KISS-принцип, помнишь?), начнем с самого простого случая, который можно себе представить. Это выражение, состоящее из одной цифры.
Перед тем как начать, удостоверьтесь, что у вас есть базовая копия Cradle. Мы будем использовать ее для других экспериментов. Затем добавьте следующие строки:
{–}
{ Parse and Translate a Math Expression }
procedure Expression;
begin
EmitLn('MOVE #' + GetNum + ',D0')
end;
{–}
И добавьте строку “Expression;” в основную программу, которая должна выглядеть так:
{–}
begin
Init;
Expression;
end.
{–}