Читаем Десять великих идей науки. Как устроен наш мир. полностью

Давайте на минуту остановимся на двумерном искривленном пространстве (а не на пространстве-времени). Чтобы представить себе его искривленным, вообразим 2-пространство, поверхность, вложенную в 3-пространство, объем. Представим себе 2-пространство как поверхность 3-сферы (обычной сферы, похожей на идеализированную Землю). Теперь представим себе сцену, в которой я стою на экваторе на нулевом меридиане (это помещает меня в неуютную влажность океана где-то к западу от побережья Африки), а вы стоите на экваторе на долготе 90° (это помещает вас на побережье Эквадора). Свисток, и мы оба начинаем двигаться к северу, проверяя на каждом шагу на протяжении всего пути, что мы не отклонились ни вправо, ни влево. Будучи физиками-теоретиками, мы не обращаем внимания на неудобства при пересечении пустынь, океанов и ледовых шапок. В конечном счете, когда мы достигаем Северного полюса, мы сталкиваемся носами (рис. 9.13). Нам приходится заключить, что параллельные с виду линии пересекаются в пространстве с этой геометрией. О пространстве, в котором все параллельные с виду линии встречаются, если их продолжить достаточно далеко, — или, что эквивалентно, о пространстве, в котором нет по-настоящему параллельных линий — говорят, что оно имеет положительную кривизну. Это пространство дает пример одной из неевклидовых геометрий, о которых я упоминал раньше.

Рис. 9.13. Вы стартуете на экваторе и упорно шагаете вверх по гринвичскому меридиану (0° долготы), все время лицом вперед. Я делаю то же самое, но начинаю из точки экватора при 90° западной долготы. Когда мы достигаем полюса, наши носы сталкиваются. Поэтому эти два меридиана не параллельны: в такой геометрии нет параллельных линий. Данная иллюстрация также показывает, как представить себе двумерную поверхность однородной положительной кривизны в виде поверхности трехмерной сферы. Мы говорим, что двумерная поверхность «вложена» в двумерное пространство.

Немедленным следствием существования неевклидовых геометрий является вывод, что геометрия есть наука экспериментальная, а не нечто (как думал Иммануил Кант, о чем мы узнаем в главе 10), справедливость чего можно установить одной лишь интроспекцией. Одна лишь интроспекция никогда не приводит к истине, что так чудесно проиллюстрировал Аристотель; интроспекция в союзе с экспериментом, конечно — темой нашей книги, — является необычайно чудесным и надежным гидом, что так великолепно проиллюстрировал Галилей. Мы стоим перед выбором перспективы для геометрии пространства: быть ли ей евклидовой, как, сидя в своих креслах, целых 2000 лет полагали Евклид и его последователи, или неевклидовой. Чтобы решить этот вопрос, мы должны обратиться к эксперименту и увидеть, например, столкнемся ли мы носами, если будем идти по параллельным путям достаточно далеко. Карл Фридрих Гаусс (1777-1855), один из величайших математиков, имел некоторое представление о том, что у евклидовой геометрии могут быть конкуренты:

На самом деле, поэтому я время от времени в шутку выражаю пожелание, чтобы геометрия Евклида была неверна.

Однажды этот концептуальный тупик был пробит в наибольшей мере немецким математиком с трагически короткой жизнью, Бернхардом Риманом (1826-1866). В своей выдающейся лекции, прочитанной в 1854 г. по случаю вступления в должность, он дал человеческому уму свободу, достаточную для того, чтобы вообразить себе неевклидовы пространства уже и с отрицательной кривизной. Рисунок 9.14 показывает двумерную поверхность отрицательной кривизны, вложенную в трехмерное пространство. Когда вы сидите в седле, вас поддерживает двумерная поверхность отрицательной кривизны. В этом пространстве через заданную точку можно провести бесконечное число линий, параллельных данной.

Рис. 9.14. Двумерная поверхность с отрицательной кривизной седлообразной формы, вложенная в трехмерное пространство.

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия