Рис. 9.15.
Кривизну поверхности можно измерить, не прибегая к представлению о вложении ее в пространство более высокой размерности. Наш подход заключается в совершении обхода вокруг точки, в которой измеряется кривизна, и в измерении разницы углов между линиями фиксируемого во время обхода направления. Например, если, как здесь показано, мы стоим на Северном полюсе, а наши руки указывают на юг, и вы идете к экватору по меридиану 90° западной долготы, затем вдоль экватора до гринвичского меридиана и возвращаетесь на Северный полюс, на протяжении всего путешествия держа руку повернутой к югу. Когда вы прибываете, мы обнаруживаем, что ваша рука повернута на 90° относительно моей. Из этого наблюдения мы можем сделать вывод, что кривизна этой поверхности равнаУ нас нет необходимости совершать путешествия по поверхностям реальной материальной Земли, футбольного мяча или яйца, чтобы вычислить кривизну. Если бы я оставался на месте, а вы бы путешествовали в пустом пространстве по замкнутой петле и в конце вашего путешествия мы увидели бы, что наши руки указывают в одном направлении, мы были бы вправе заключить, что эта область пространства является плоской и евклидовой. Если бы мы увидели, что между нашими руками есть угол, мы заключили бы, что эта область пространства искривлена и поэтому неевклидова. В этом случае относительное положение наших рук показало бы знак и величину кривизны данной области пространства. В общем случае, путешествие по разным областям пространства может давать разные результаты. Мы даже можем обнаружить, что различные ориентации петлеобразных путешествий вокруг одной и той же точки приводят к разным результатам. Это род эксперимента, который мы могли бы проделать, чтобы определить, геометрия какого рода преобладает в данной области пространства.
Мы нуждаемся еще в одном понятии, прежде чем получим возможность вполне оценить свойства искривленного пространства.
Настало время сделать шаг от искривленного пространства к искривленному пространству-времени. Этот шаг не столь травмирует, как можно было бы ожидать, поскольку большую часть необходимых понятий можно импортировать из нашего обсуждения искривленного пространства. Чтобы вообразить искривленное пространство-время, мы можем представить себе двумерное пространство с одной пространственной размерностью и одной временной, вложенное в трехмерное пространство, точно так же, как мы представляли себе двумерное пространство. Если пространство-время является плоским, геодезические представляют собой прямые линии на двумерной поверхности. Однако из забавной геометрии пространства-времени следует, что геодезическая, соединяющая две точки, соответствует наибольшему расстоянию между ними (вспомним Кастора и Поллукса). Искривленное двумерное пространство-время можно изобразить в виде изогнутого листа в трехмерном пространстве. Так же как в плоском пространстве-времени, геодезические — которые теперь могут извиваться по пространству в зависимости от его локальной структуры — соответствуют самым длинным интервалам между точками, которые они соединяют.